Issue
Korean Journal of Chemical Engineering,
Vol.28, No.8, 1754-1760, 2011
Simultaneous absorption of carbon dioxide, sulfur dioxide, and nitrogen dioxide into aqueous 1, 8-diamino-p-menthane
3 gaseous mixtures of CO2, SO2, and NO2 were simultaneously absorbed into 1, 8-diamino-p-menthane (DAM) in a stirred, semi-batch tank with a planar, gas-liquid interface within a range of 0-2.0 kmol/m3 of DAM, 0.05-0.3 atm of CO2, 0.0025-0.04 atm of SO2, and 298.15-323.15 K at a fixed NO2 of 0.001 atm to measure their total molar fluxes. Diffusivity and Henry constants of CO2, SO2, and NO2 were obtained using the reference data, measured by N2O analogy. The mass transfer coefficient of each gas, needed to obtain the absorption rate without a chemical reaction, was modified with viscosity of aqueous DAM solution. In CO2-SO2-NO2-DAM system accompanied by firstorder reaction with respect to CO2 and instantaneous reactions with respect to SO2 and NO2, the enhancement factors of CO2 and SO2 were obtained by using an approximate solution of mass balances consisting of reaction regimes of two gases, one of which reacts instantaneously, and then, the enhancement factor of NO2 by comparing the instantaneous rates of SO2 and NO2. The observed values of the molar flux approached to the calculated values very well.
[References]
  1. Aresta M, Carbon dioxide recovery and utilization, Kluwer Academic Pub., Boston, 2003
  2. Caplow M, J. Am. Chem. Soc., 90, 6795, 1968
  3. Danckwerts PV, Chem. Eng. Sci., 34, 443, 1979
  4. da Silva EF, Svendsen HF, Ind. Eng. Chem. Res., 43(13), 3413, 2004
  5. Mimura T, Suda T, Iwaki I, Honda A, Kumazawa H, Chem. Eng. Commun., 170, 245, 1998
  6. Stein J, Kind M, Schlunder EU, Chem. Eng. J., 86(1-2), 17, 2002
  7. Jung SH, Jeong GT, Lee GY, Cha JM, Park DH, Korean J. Chem. Eng., 24(6), 1064, 2007
  8. Ebrahimi S, Picioreanu C, Kleerebezem R, Heijnen JJ, van Loosdrecht MCM, Chem. Eng. Sci., 58(16), 3589, 2003
  9. Colle S, Vanderschuren J, Thomas D, Chem. Eng. Process., 43(11), 1397, 2004
  10. Xia JZ, Rumpf B, Maurer G, Ind. Eng. Chem. Res., 38(3), 1149, 1999
  11. Vandam MH, Lamine AS, Roizard D, Lochon P, Roizard C, Ind. Eng. Chem. Res., 36(11), 4628, 1997
  12. Nagel D, de Kermadec R, Lintz HG, Roizard C, Lapicque F, Chem. Eng. Sci., 57(22-23), 4883, 2002
  13. Danckwerts PV, Gas-liquid reactions, McGraw-Hill, New York, 1970
  14. Denbigh KG, Prince AJ, J. Am. Chem. Soc., 69, 790, 1947
  15. Gray P, Yoffe AD, Chem. Rev., 55, 1069, 1955
  16. Carberry JJ, Chem. Eng. Sci., 9, 189, 1959
  17. Caudle PG, Denbigh KG, Trans. Faraday, Soc., 49, 39, 1959
  18. Wendel MM, Pigford RL, J. Am. Chem. Soc., 4, 249, 1958
  19. Ho MP, Klinzing GE, Can J. Chem. Eng., 64, 243, 1986
  20. Sada E, Kumazawa H, Yoshikawa Y, J. Am. Chem. Soc., 34, 1215, 1988
  21. Kenig EY, Schneider R, Gorak A, Chem. Eng. Sci., 54(21), 5195, 1999
  22. Park SW, Park DW, Oh KJ, Kim SS, Sep. Sci. Technol., 44(3), 543, 2009
  23. Hwang KS, Kim DW, Park SW, Park DW, Oh KJ, Kim SS, Sep. Sci. Technol., 44(16), 3888, 2009
  24. Oh KJ, Kim SS, Park SW, Sep. Sci. Technol., To be accepted, 2010
  25. Goetter LA, Pigford RL, J. Am. Chem. Soc., 17, 793, 1971
  26. Hikita H, Asai S, Ishikawa H, Chem. Eng., J., 18, 169, 1979
  27. Oh KJ, Choi YS, Kim SS, Park SW, Korean J. Chem. Eng., To be accepted, 2010
  28. Seo JB, Jeon SB, Choi WJ, Kim JW, Lee GH, Oh KJ, Korean J. Chem. Eng., 28(1), 170, 2011
  29. Daraiswany LK, Sharma MM, Heterogeneous reaction: Analysis, example and reactor design, Wiley, New York, 1984
  30. Yu W, Astarita G, Savage DW, Chem. Eng. Sci., 40, 1585, 1985
  31. Versteeg GF, van Swaaij WPM, J. Chem. Eng. Data., 33, 29, 1988
  32. Saha AK, Bandyopadhyay SS, Biswas AK, J. Chem. Eng. Data., 38, 78, 1993
  33. Pasiuk-Bronikowska W, Rudzinski KJ, Chem. Eng. Sci., 46, 2281, 1991
  34. Shadid FT, Handley D, Chem. Eng. Res. Dev., 67, 185, 1989
  35. Cussler EL, Diffusion, Cambridge University Press, New York, 1984
  36. Carta G, Pigford RL, Ind. Eng. Chem. Fundam., 22, 329, 1983