Issue
Korean Journal of Chemical Engineering,
Vol.28, No.8, 1744-1748, 2011
Expression of redesigned mussel silk-like protein in Escherichia coli
Silks have been used widely for human beings due to their several extraordinary properties. Until now, the studies on silk proteins have mainly focused on spiders and silkworms. Because silk properties are organism-dependent, novel silk protein types can be found and developed through investigation of new silk-bearing organisms. We noticed that marine mussel has silk-like domains containing many repeats with abundance of glycine and alanine. In the present work, we redesigned mussel-derived silk-like gene sequence which contains alternating repeated and nonrepeated regions with optimized codons for Escherichia coli. For successful expression of recombinant mussel silklike protein in E. coli cells, we employed several experimental strategies, including use of strong promoter, cold shock expression, and genetic fusions. We observed significant repression on cell growths by even low expression levels of soluble mussel silk-like proteins in cold shock- and glutathione s-transferase (GST) fusion-based systems. Thus, we finally used baculoviral polyhedrin protein as a fusion partner and successfully expressed insoluble mussel silk-like protein with relatively high expression level and without cell growth repression in E. coli.
[References]
  1. Cao Y, Wang BC, Int. J. Mol. Sci., 10(4), 1514, 2009
  2. Gosline JM, Demont ME, Denny MW, Endeavour., 10, 37, 1986
  3. Lewis RV, Chem. Rev., 106(9), 3762, 2006
  4. Huang J, Wong Po Foo C, Kaplan DL, Polym. Rev., 47, 29, 2007
  5. Sutherland TD, Church JS, Hu X, Huson MG, Kaplan DL, Weisman S, PLoS ONE., 6, e16489, 2011
  6. Weisman S, Haritos VS, Church JS, Huson MG, Mudie ST, Rodgers AJW, Dumsday GJ, Sutherland TD, Biomaterials., 31, 2695, 2010
  7. Gosline J, Lillie M, Carrington E, Guerette P, Ortlepp C, Savage K, Phil. Trans. R. Soc. Lond., B357, 121, 2002
  8. Vendrely C, Scheibel T, Macromol. Biosci., 7, 401, 2007
  9. Harrington MJ, Waite JH, J. Exp. Biol., 210, 4307, 2007
  10. Qin XX, Coyne KJ, Waite JH, J. Biol. Chem., 272, 32623, 1997
  11. Qin XX, Waite JH, Proc. Natl. Acad. Sci., 95, 10517, 1998
  12. Coyne KJ, Qin XX, Waite JH, Science, 277(5333), 1830, 1997
  13. Lombardi SJ, Kaplan DL, J. Arachnol., 18, 297, 1990
  14. Rising A, Widhe M, Johansson J, Hedhammar M, Cell. Mol. Life Sci., 68, 169, 2011
  15. Craig CL, Riekel C, Comp. Biochem. Phys., B., 133, 493, 2002
  16. Guerette PA, Ginzinger DG, Weber BH, Gosline JM, Science, 272(5258), 112, 1996
  17. Menzella HG, Microb. Cell Fact., 10, 15, 2011
  18. Winkler S, Kaplan DL, Rev. Mol. Biotechnol., 74, 85, 2000
  19. Fahnestock SR, Bedzyk LA, Appl. Microbiol. Biotechnol., 47(1), 33, 1997
  20. Vaillancourt PE, E. coli Gene Expression Protocols., 205, 1, 2003
  21. Goldstein J, Pollitt NS, Inouye M, Proc. Natl. Acad. Sci., 87, 283, 1990
  22. Tanabe H, Goldstein J, Yang M, Inouye M, J. Bacteriol., 174, 3867, 1992
  23. Steczko J, Donoho GA, Dixon JE, Sugimoto T, Axelrod B, Protein Expr. Purif., 2, 221, 1991
  24. Tamura M, Ito K, Kunihiro S, Yamasaki C, Haragauchi M, Protein Expr. Purif., 78(1), 1, 2011
  25. Makrides SC, Microbiol. Rev., 60, 512, 1996
  26. LaVallie ER, McCoy JM, Curr. Opin. Biotechnol., 6, 501, 1995
  27. Guo WH, Cao L, Jia ZJ, Wu G, Li T, Lu FX, Lu ZX, Protein Expr. Purif., 77(2), 185, 2011
  28. Harrap KA, Virology., 50, 124, 1972
  29. Rohrmann GF, J. Gen. Virol., 67, 1499, 1986
  30. Seo JH, Li L, Yeo JS, Cha HJ, Biotechnol. Bioeng., 84(4), 467, 2003
  31. Rudolph R, Lilie H, Faseb J., 110, 49, 1996
  32. Quant RL, Pearson MN, Rohrmann GF, Beaudreau GS, Appl. Environ. Microbiol., 48, 732, 1984
  33. Wei Q, Kim YS, Seo JH, Jang WS, Lee IH, Cha HJ, Appl. Environ. Microbiol., 71, 5038, 2005