Issue
Korean Journal of Chemical Engineering,
Vol.28, No.8, 1684-1687, 2011
Effect of CdS contents on H2 production from Pt-(CdS/TiO2) film-typed photocatalysts
Pt-(CdS/TiO2) film-typed photocatalysts are prepared with a doctor-blade method followed by a chemical bath deposition (CBD) process, and the films are characterized by UV-vis spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy. The film-typed structure is composed of photocatalysts and Pt metal part on a FTO substrate without additional electric device, so it is relatively simpler than the conventional photoelectrochemical cell. CdS quantum dots are introduced as a sensitizer for visible light response. Amounts of CdS quantum dots on TiO2 surface are increased with increasing CBD cycles, but they start to aggregate after certain CdS concentration due to oversaturation phenomenon. This high CdS content induces high electron losses, and therefore it reduces amounts of hydrogen production. As a result, there is a saturation point of CdS content at Cd/Ti ratio of 0.197, and the amounts of evolved hydrogen are 5.407 μmol/cm2 ·h at this photocatalyst formulation.
[References]
  1. Fujishima A, Honda K, Nature., 238, 37, 1972
  2. Lee S, Yun CY, Hahn MS, Lee J, Yi J, Korean J. Chem. Eng., 25(4), 892, 2008
  3. Kim IK, Ha HJ, Lee SK, Lee JK, Korean J. Chem. Eng., 22(3), 382, 2005
  4. Domen K, Hara M, Kondo JN, Takata T, Kudo A, Kobayashi H, Inoue Y, Korean J. Chem. Eng., 18(6), 862, 2001
  5. Lee SG, Lee HI, Korean J. Chem. Eng., 15(5), 463, 1998
  6. Luo H, Takata T, Lee Y, Zhao J, Domen K, Yan Y, Chem. Mater., 16, 846, 2004
  7. Bamwenda G, Tsubota S, Nakamura T, Haruta M, J. Photochem. Photobiol. A: Chem., 89, 177, 1995
  8. Park H, Choi W, Hoffmann M, J. Mater. Chem., 18, 2379, 2008
  9. Tada H, Mitsui T, Kiyonaga T, Akita T, Tanaka K, Nature. Mater., 5, 782, 2006
  10. Liu H, Yuan J, Shangguan WF, Energy Fuels, 20(6), 2289, 2006
  11. Peng TY, Ke DN, Cai P, Dai K, Ma L, Zan L, J. Power Sources, 180(1), 498, 2008
  12. Sreethawong T, Junbua C, Chavadeja S, J. Power Sources, 190(2), 513, 2009
  13. Bang J, Kamat P, ACS Nano., 3, 1467, 2009
  14. Miwa T, Kaneco S, Katsumata H, Suzuki T, Ohta K, Chand Verma S, Sugihara K, Int. J. Hydrog. Energy., 35, 6554, 2010
  15. Kitano M, Tsujimaru K, Anpo M, Appl. Catal. A: Gen., 314(2), 179, 2006
  16. Lin S, Lee Y, Chang C, Shen Y, Yang Y, Appl. Phys. Lett., 90, 143517, 2007
  17. Strataki N, Antoniadou M, Dracopoulos V, Lianos P, Catal. Today., 151, 53, 2010
  18. Lee Y, Chi C, Liau S, Chem. Mater., 22, 922, 2009
  19. Vogel R, Pohl K, Weller H, Chem. Phys. Lett., 174, 241, 1990
  20. Baker DR, Kamat PV, Adv. Funct. Mater., 19(5), 805, 2009