Issue
Korean Journal of Chemical Engineering,
Vol.28, No.8, 1764-1769, 2011
Ce0.9Sr0.1Cr0.5Mn0.5O3-δ as the anode materials for solid oxide fuel cells running on H2 and H2S
Perovskite-type Ce0.9Sr0.1Cr0.5Mn0.5O3-δ (CSCMn) was synthesized and evaluated as anode for solid oxygen fuel cells based on Ce0.8Sm0.2O1.9 (SDC). The conductivities of CSCMn were evaluated with DC four-probe method in 3% H2-N2 and 5% H2S-N2 at 450-700 ℃, respectively. The compositions of CSCMn powders were studied by XRD and thermodynamic calculations. Meanwhile, sintering temperatures affecting phases of CSCMn is also proposed with XRD, and the analysis is given with thermodynamic calculations. CSCMn exhibits good chemical compatibility with electrolyte (SDC) in N2. After exposure to 5% H2S-N2 for 5 h at 800 ℃, CSCMn crystal structures change and some sulfides are detected, as evidenced by XRD and Raman analyses. The electrochemical properties are measured for the cell comprising CSCMn- SDC/SDC/Ag in 5% H2S-N2 at 600 ℃ and in 3% H2-N2 at 450 and 500 ℃. The electrochemical impedance spectrum (EIS) is used to analyze ohm and polarization resistance of the cell at various temperatures.
[References]
  1. Meng GY, Ma GL, Ma QL, Peng RR, Liu XQ, Solid State Ion., 178(7-10), 697, 2007
  2. Williams MC, Utz BR, Moore KM, J. Fuel Cell Sci. Technol., 1, 81, 2004
  3. Kurokawa H, Yang LM, Jacobson CP, De Jonghe LC, Visco SJ, J. Power Sources, 164(2), 510, 2007
  4. Baratto F, Diwekar UM, J. Power Sources, 139(1-2), 188, 2005
  5. Song CS, Catal. Today, 77(1-2), 17, 2002
  6. Shao ZP, Haile SM, Nature., 431, 170, 2004
  7. Norby T, Solid State Ion., 125(1-4), 1, 1999
  8. Xiufu Sun, 8th SERC Biannual Meeting, 2010
  9. Nagel FP, Schildhauer TJ, Sfeir J, Schuler A, Biollaz SMA, J. Power Sources, 189(2), 1127, 2009
  10. Twigg MV, Catalyst Handbook, Wolfe Publishing Ltd., Frome, England, 1989
  11. Hennings U, Brune M, Reimert R, GWF Gas Erdas., 145, 92, 2004
  12. Marina O, Pederson LR, Edwards DJ, Coyle CW, Templeton J, Engelhard M, Zhu Z, Arsenic and sulfur impurities, in: Proceedings of the 8th Annual SECA Workshop, San Antonio, United States of America, 2007
  13. Cunningham RH, Fowles M, Ormerod RM, Staniforth J, DTI, Report F/01/00222/REP, 2004
  14. Arnstein N, Experimental investigation of solid oxide fuel cells using biomass gasification producer gases, Norwegian University of Science and Technology, Trondheim, Norway, 2005
  15. Aguilar L, Zha SW, Cheng Z, Winnick J, Liu ML, J. Power Sources, 135(1-2), 17, 2004
  16. Matsuzaki Y, Yasuda I, Solid State Ion., 132(3-4), 261, 2000
  17. Brightman E, Ivey DG, Brett DJL, Brandon NP, J. Power Sources., In press.
  18. Danilovic N, Luo JL, Chuang KT, Sanger AR, J. Power Sources, 194(1), 252, 2009
  19. Danilovic N, Luo JL, Chuang KT, Sanger AR, J. Power Sources, 192(2), 247, 2009
  20. Wu WC, Huang JT, Chiba A, J. Power Sources, 195(18), 5868, 2010
  21. Zhu XF, Zhong Q, Zhao XJ, Yan H, Appl. Surf. Sci., 257, 1967, 2011
  22. Lohsoontorn P, Brett DJL, Brandon NP, J. Power Sources, 175(1), 60, 2008
  23. OUTOKUMPU, HSC Chemistry for Windows, Version 5.0, OUTOKUMPU
  24. Kittel C, Introduction to Solid State Physics, 8th ed., Wiley, Berkley, CA, 2005
  25. Weber WJ, Griffin CW, Bates L, J. Am. Ceram. Soc., 70(4), 265, 1987
  26. Gu HX, Zheng Y, Ran R, Shao ZP, Jin WQ, Xu NP, Ahn J, J. Power Sources, 183(2), 471, 2008
  27. McBride JR, Hass KC, Poindexter BD, Weber WH, J. Appl. Phys., 76, 2435, 1994
  28. Zunica M, Chevallier L, Radojkovic A, Brankovic G, Brankovic Z, Bartolomeo ED, J. Alloy. Compd., 509, 1157, 2011
  29. Im JM, You HJ, Yoon YS, Shin DW, Ceramics International., 34, 877, 2008
  30. Souza ECC, Muccillo ENS, J. Alloy. Compd., 473, 560, 2009
  31. Vanheuveln FH, Bouwmeester HJ, J. Electrochem. Soc., 144(1), 134, 1997
  32. Leng YJ, Chan SH, Khor KA, Jiang SP, Int. J. Hydrog. Energy., 29, 1025, 2004
  33. Lv SQ, Long GH, Ji Y, Meng XW, Zhao HY, Sun CC, J. Alloy. Compd.