Issue
Korean Journal of Chemical Engineering,
Vol.28, No.8, 1749-1753, 2011
Biomineralization of calcium carbonate by adding aspartic acid and lysozyme
Calcium carbonate is one of the most abundant materials present in nature. Crystal structures of CaCO3 become three polymorphic modifications, namely calcite, aragonite and vaterite. Polymorphic modifications are mediated by adding aspartic acid (Asp) and lysozyme. Lysozyme, which is a major component of egg white proteins, has influenced the calcification of avian eggshells. The influence of Asp and lysozyme on the crystallization of CaCO3 was investigated by adding these additives and calcium chloride solution into sodium carbonate solution in a crystallization vessel. CaCO3 crystals were analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and Fourier transform infrared spectrometry (FT-IR). XRD was used to select the intensities and crystal structure of specific calcium carbonate. SEM was employed for the analysis of the morphology of the precipitation and particle size. Two kinds of crystals were identified by FT-IR spectrum. Hexagonal crystals of vaterite were affected by the Asp in the crystallization solution. However, rhombohedral crystals of calcite by lysozyme were formed without any sign of vaterite.
[References]
  1. Shivkumara C, Singh P, Gupta A, Hegade MS, Mater. Res. Bull., 41, 1455, 2006
  2. Tamura K, Tsuge H, Chem. Eng. Sci., 61(17), 5818, 2006
  3. Sun X, Zhou Y, Ren J, Cui F, Li H, Appl. Phys., 7, 75, 2007
  4. Bentov S, Weil S, Glazer L, Sagi A, Berman A, J. Struct. Biol., 171(2), 207, 2010
  5. Gago-Duport L, Briones MJI, Rodriguez JB, Covelo B, J. Struct. Biol., 162(3), 422, 2008
  6. Faatz M, Grohn F, Wegner G, Mater. Sci. Eng., 25(2), 153, 2005
  7. Beck R, Andreassen J, Cryst. Growth., 3112(15), 2226, 2010
  8. Jung WM, Kang SH, Kim WS, Choi CK, Chem. Eng. Sci., 55(4), 733, 2000
  9. Kang SH, Hirasawa I, Kim WS, Choi CK, J. Colloid Interface Sci., 288(2), 496, 2005
  10. Hao W, Qiang S, Ying Z, Wang DJ, Xu DF, J. Cryst. Growth, 260(3-4), 545, 2004
  11. Kawano J, Shimobayashi N, Kitamura M, Shinoda K, Aikawa N, J. Cryst. Growth, 237, 419, 2002
  12. Li Y, Wiliana T, Tam KC, Mater. Res. Bull., 42(5), 820, 2007
  13. Hadiko G, Han YS, Fuji M, Takahashi M, Mater. Lett., 59(19), 25192, 2005
  14. Han YS, Hadiko G, Fuji M, Takahashi M, J. Cryst. Growth, 289(1), 269, 2006
  15. Zhao D, Zhu T, Li F, Ruan Q, Zhang S, Zhang L, Xu D, Mater. Res. Bull., 45(1), 80, 2010
  16. Aizenberg J, Albeck S, Weiner S, Addadi L, J. Cryst. Growth., 142(1), 156, 1994
  17. Wentao H, Qingling F, Mater. Sci. Eng., 26(4), 644, 2006
  18. Dickinson SR, Henderson GE, McGrath KM, J. Cryst. Growth, 244(3-4), 369, 2002
  19. Hu Y, Ma Y, Zhou Y, Nie F, Duan X, Pei C, J. Cryst. Growth., 321(10), 1741, 2010
  20. Frenandez G, Castro E, J. Food Eng., 92(1), 112, 2009
  21. Lukeman PS, Sherman WB, Micheel C, Alivisatos AP, Seeman NC, Biophys. J., 95(1), 3340, 2008
  22. Kim JH, Kim JM, Kim WS, Kim IH, Korean Chem. Eng. Res., 47(2), 213, 2009
  23. Kim JH, Song SM, Kim JM, Kim WS, Kim IH, Korean J. Chem. Eng., 27(5), 1535, 2010