Issue
Korean Journal of Chemical Engineering,
Vol.28, No.8, 1779-1784, 2011
Thermomechanical properties of ethylene-propylene-diene terpolymer/organoclay nanocomposites and foam processing in supercritical carbon dioxide
EPDM/organoclay nanocomposites were prepared by a melt mixing of a semicrystalline EPDM grafted with maleic anhydride and an organoclay (Cloisite 20A) in an internal mixer. XRD and TEM analysis revealed that the EPDM/clay forms a partially exfoliated nanocomposite and the silicate layers of the clay are uniformly dispersed at a nanometer scale in the rubber matrix. DSC studies indicated that the clay nanoparticles caused an increase in the nonisothermal crystallization temperature of the EPDM. Tensile and dynamic mechanical analysis showed that a small amount of the clay nanoparticles effectively enhanced the stiffness of the EPDM without adversely affecting its flexibility. The EPDM/clay nanocomposites were used to produce foams by using a batch process in an autoclave, with supercritical carbon dioxide as a foaming agent. The exfoliated nanocomposite produced a microcellular foam with average cell size as small as 6.23 μm and cell density as high as 2.4×1010 cell/cm3.
[References]
  1. Lan T, Pinnavaia TJ, Chem. Mater., 6, 2216, 1994
  2. Shi H, Lan T, Pinnavaia TJ, Chem. Mater., 8, 1584, 1996
  3. Utracki LA, Clay-containing polymeric nanocomposites, Rapra Technology Ltd., Shawbury, UK, 2004
  4. Cho JW, Paul DR, Polymer, 42(3), 1083, 2001
  5. Fornes TD, Yoon PJ, Keskkula H, Paul DR, Polymer, 42(25), 9929, 2001
  6. Lee SR, Park HM, Lim H, Kang TY, Li XC, Cho WJ, Ha CS, Polymer, 43(8), 2495, 2002
  7. Liu Z, Chen K, Yan D, Eur. Polym. J., 39, 2359, 2003
  8. Huang JC, Zhu ZK, Yin J, Qian XF, Sun YY, Polymer, 42(3), 873, 2001
  9. Hasegawa N, Okamoto H, Kawasumi M, Usuki A, J. Appl. Polym. Sci., 74(14), 3359, 1999
  10. Hasegawa N, Okamoto H, Kato M, Usuki A, J. Appl. Polym. Sci., 78(11), 1918, 2000
  11. Hasegawa N, Okamoto H, Usuki A, J. Appl. Polym. Sci., 93(2), 758, 2004
  12. Wang KH, Choi MH, Koo CM, Choi YS, Chung IJ, Polymer, 42(24), 9819, 2001
  13. Lee LJ, Zeng C, Cao X, Han X, Shen J, Xu G, Comp. Sci. Technol., 65, 2344, 2005
  14. Chum PS, Kao CK, Knight GW, Plast. Eng., June, 21, 1995
  15. Nam PH, Maiti P, Okamoto M, Kotaka T, Nakayama T, Takada M, Ohshima M, Usuki A, Hasegawa N, Okamoto H, Polym. Eng. Sci., 42(9), 1907, 2002
  16. Taki K, Yanagimoto T, Funami E, Okamoto M, Ohshima M, Polym. Eng. Sci., 44(6), 1004, 2004
  17. Mitsunaga M, Ito Y, Ray SS, Okamoto M, Hironaka K, Macromol. Mater. Eng., 288, 543, 2003
  18. Ito Y, Yamashita M, Okamoto M, Macromol. Mater. Eng., 291, 773, 2006
  19. Fujimoto Y, Ray SS, Okamoto M, Ogami A, Yamada K, Ueda K, Macromol. Rapid Commun., 24(7), 457, 2003
  20. Di YW, Iannace S, Di Maio E, Nicolais L, J. Polym. Sci. B: Polym. Phys., 43(6), 689, 2005
  21. Han XM, Zeng CC, Lee LJ, Koelling KW, Tomasko DL, Polym. Eng. Sci., 43(6), 1261, 2003
  22. Strauss W, D’Souza NA, J. Cell. Plast., 40, 229, 2004
  23. Zeng CC, Han XM, Lee LJ, Koelling KW, Tomasko DL, Adv. Mater., 15(20), 1743, 2003
  24. Chang YW, Lee DS, Bae SY, Polym. Int., 55, 184, 2006
  25. Vaia RA, Giannelis EP, Macromolecules, 30(25), 8000, 1997
  26. Priya L, Jog JP, J. Polym. Sci. B: Polym. Phys., 41(1), 31, 2003
  27. Wang Z, Pinnavaia TJ, Chem. Mater., 10, 3769, 1998
  28. Xu R, Manias E, Snyder AJ, Runt J, J. Biomed. Mater. Res., 64A, 114, 2003
  29. Amornsakchai T, Sinpatanapan B, Bualek-Limcharoen S, Meesiri W, Polymer, 40(11), 2993, 1999