Issue
Korean Journal of Chemical Engineering,
Vol.28, No.6, 1444-1450, 2011
Simultaneous absorption of carbon dioxide, sulfur dioxide and nitrogen dioxide into aqueous 2-amino-2-methy-1-propanol
The absorption mechanism of three acidic gases in alkali solution, such as the system of carbon dioxide, sulfur dioxide, and nitrogen dioxide in 2-amino-2-methyl-1-propanol (AMP), was used to predict the simultaneous absorption rates using the film theory. Diffusivity, Henry constant and mass transfer coefficient of each gas were used to obtain the theoretical enhancement factor of each component. The theoretical molar fluxe of each gas was obtained by an approximate solution of mass balances with reaction regions of the first order reaction of CO2 and instantaneous reactions of SO2 and NO2 in CO2-SO2-NO2-AMP system. From the comparison between the theoretical total fluxes of these gases and the measured ones, the solubility and the reaction rate between each gas and AMP influenced its molar flux.
[References]
  1. Astarita G, Savage DW, Bisio A, Gas treating with chemical solvents, John Wiley & Sons, New York, 1983
  2. Caplow M, J. Am. Chem. Soc., 90, 6795, 1968
  3. Danckwerts PV, Chem. Eng. Sci., 34, 443, 1979
  4. da Silva EF, Svendsen HF, Ind. Eng. Chem. Res., 43(13), 3413, 2004
  5. Mimura T, Suda T, Iwaki I, Honda A, Kumazawa H, Chem. Eng. Commun., 170, 245, 1998
  6. Brogren C, Karlsson HT, Chem. Eng. Sci., 52(18), 3085, 1997
  7. Stein J, Kind M, Schlunder EU, Chem. Eng. J., 86(1-2), 17, 2002
  8. Jung SH, Jeong GT, Lee GY, Cha JM, Park DH, Korean J. Chem. Eng., 24(6), 1064, 2007
  9. Ebrahimi S, Picioreanu C, Kleerebezem R, Heijnen JJ, van Loosdrecht MCM, Chem. Eng. Sci., 58(16), 3589, 2003
  10. Colle S, Vanderschuren J, Thomas D, Chem. Eng. Process., 43(11), 1397, 2004
  11. Xia JZ, Rumpf B, Maurer G, Ind. Eng. Chem. Res., 38(3), 1149, 1999
  12. Vandam MH, Lamine AS, Roizard D, Lochon P, Roizard C, Ind. Eng. Chem. Res., 36(11), 4628, 1997
  13. Nagel D, de Kermadec R, Lintz HG, Roizard C, Lapicque F, Chem. Eng. Sci., 57(22-23), 4883, 2002
  14. Danckwerts PV, Gas-Liquid Reactions, McGraw-Hill, New York, 1970
  15. Hikita H, Asai S, Takatsuka T, Chem. Eng. J., 4, 31, 1972
  16. Ho MP, Klinzing GE, Can. J. Chem. Eng., 64, 243, 1986
  17. Sada E, Kumazawa H, Yoshikawa Y, J. Am. Chem. Soc., 34, 1215, 1988
  18. Kenig EY, Schneider R, Gorak A, Chem. Eng. Sci., 54(21), 5195, 1999
  19. Goetter LA, Pigford RL, J. Am. Chem. Soc., 17, 793, 1971
  20. Hikita H, Asai S, Ishikawa H, Chem. Eng., J., 18, 169, 1979
  21. Park SW, Park DW, Oh KJ, Kim SS, Sep. Sci. Technol., 44(3), 543, 2009
  22. Hwang KS, Han L, Park DW, Oh KJ, Park SW, Sep. Sci. Technol., in review, 2010
  23. Hikita H, Asai A, Tsufi T, J. Am. Chem. Soc., 23, 538, 1977
  24. Denbigh KG, Prince AJ, J. Am. Chem. Soc., 69, 790, 1947
  25. Gray P, Yoffe AD, Chem. Rev., 55, 1069, 1955
  26. Carberry JJ, Chem. Eng. Sci., 9, 189, 1959
  27. Caudle PG, Denbigh KG, Trans. Faraday, Soc., 49, 39, 1959
  28. Wendel MM, Pigford RL, J. Am. Chem. Soc., 4, 249, 1958
  29. Daraiswany LK, Sharma MM, Heterogeneous reaction: Analysis, example and reactor design, John Wiley Sons, New York, 1984
  30. Yu W, Astarita G, Savage DW, Chem. Eng. Sci., 40, 1585, 1985
  31. Park SW, Park DW, Oh KJ, Kim SS, Sep. Sci. Technol., 44(3), 543, 2009
  32. Versteeg GF, van Swaaij WPM, J. Chem. Eng. Data., 33, 29, 1988
  33. Saha AK, Bandyopadhyay SS, Biswas AK, J. Chem. Eng. Data., 38, 78, 1993
  34. Pasiuk-Bronikowska W, Rudzinski KJ, Chem. Eng. Sci., 46, 2281, 1991
  35. Shadid FT, Handley D, Chem. Eng. Res. Dev., 67, 185, 1989
  36. Cussler EL, Diffusion, Cambridge University Press, New York, 1984
  37. Carta G, Pigford RL, Ind. Eng. Chem. Fundam., 22, 329, 1983