Issue
Korean Journal of Chemical Engineering,
Vol.28, No.6, 1420-1426, 2011
Comparison of methods for preventing methanol inhibition in enzymatic production of biodiesel
During the enzymatic production of biodiesel, methanol has a major inhibitory effect on enzyme activity whereas glycerol has a minor effect. Revitalization of the methanol-deactivated enzyme or pre-incubation of enzyme with various chemicals turned out to be unsuccessful. The stepwise feeding of methanol, a widely used conventional method for preventing methanol inhibition, was optimized in terms of the aliquot number and feeding interval to obtain a high conversion rate as well as a high degree of final biodiesel conversion. The use of six feedings of methanol with an equivalent molar ratio of 0.75 at 3-h intervals was found to be the optimal mode for preventing methanol inhibition; a biodiesel conversion rate of approximately 95% could be achieved within 20 h by using this method. Finally, to prevent contact between the undissolved methanol and the enzyme, methanol was pre-dissolved in water or biodiesel and fed to the mixture of soybean oil and the enzyme. This pre-dissolution method completely prevented enzyme inhibition, and a final biodiesel conversion rate of 82.3% was obtained.
[References]
  1. Hong YK, Hong WH, Korean Chem. Eng. Res., 45(5), 424, 2007
  2. Antoni D, Zverlov VV, Schwarz WH, Appl. Microbiol. Biotechnol., 77(1), 23, 2007
  3. Lee DH, Kim JM, Shin HY, Kang SW, Kim SW, Biotechnol. Bioprocess Eng., 11(6), 522, 2006
  4. Fukuda H, Hama S, Tamalampudi S, Noda H, Trends in Biotechnol., 26(12), 668, 2008
  5. Wang ZM, Lee JS, Park JY, Wu CZ, Yuan ZH, Korean J. Chem. Eng., 25(4), 670, 2008
  6. Jun SA, Kang CH, Kong CSW, Sang BI, Um YS, Korean J. Biotechnol. Bioeng., 23(5), 413, 2008
  7. Ban K, Hama S, Nishizuka K, Kaieda M, Matsumoto T, Kondo A, Noda H, Fukuda H, J. Mol. Catal. B: Enzym., 17, 157, 2002
  8. Li L, Du W, Liu D, Wang L, Li Z, J. Mol. Catal. B: Enzym., 43, 58, 2006
  9. Jeon DJ, Yeom SH, Korean J. Chem. Eng., 27(5), 1555, 2010
  10. Shimada Y, Waanabe Y, Samukawa T, Sugihara A, Noda H, Fukuda H, Tominaga Y, JAOCS., 76, 789, 1999
  11. Shimada Y, Watanabe Y, Suglihara A, Tominaga Y, J. Mol. Catal. B: Enzym., 17, 133, 2002
  12. Watanabe Y, Shimada Y, Sugihara A, Noda H, Fukuda H, Tominaga Y, J. Am. Oil. Chem. Soc., 77, 355, 2000
  13. Samukawa T, Kaieda M, Matsumoto T, Ban K, Kondo A, Shimada Y, Noda H, Fukuda H, J. Biosci. Bioeng., 90(2), 180, 2000
  14. Ranganathan SV, Narasimhan SL, Muthukumar K, Bioresour. Technol., 99(10), 3975, 2008
  15. Kim SJ, Jung SM, Park YC, Park KM, Biotechnol. Bioprocess Eng., 12(4), 441, 2007
  16. Royon D, Daz M, Ellenrieder G, Locatelli S, Bioresour. Technol., 98(3), 648, 2007
  17. Hung TC, Giridgar R, Chiou SH, Wu WT, J. Mol. Catal. B: Enzym., 26, 69, 2003
  18. Schwab AW, Bagby MO, Freedman B, Fuel., 66, 1372, 1987
  19. Bako KB, Kova FCS, Gubicza L, Hansco JK, Biocatal. Biotransform., 20, 437, 2002
  20. Iso M, Chem B, Eguchi M, Kudo T, Shrestha S, J. Mol. Catal. B: Enzym., 16, 53, 2001
  21. Modi MK, Reddy JRC, Rao BVSK, Prasad RBN, Biotechnol. Lett., 28(9), 637, 2006
  22. Chen JW, Wu WT, J. Biosci. Bioeng., 95(5), 466, 2003
  23. Nie K, Xie F, Wang F, Tan T, J. Mol. Catal. B: Enzym., 43, 142, 2006