Issue
Korean Journal of Chemical Engineering,
Vol.28, No.6, 1412-1419, 2011
Improvement of ATP regeneration efficiency and operation stability in porcine interferon-α production by Pichia pastoris under lower induction temperature
The performance of traditional heterologous protein production by Pichia pastoris with methanol induction at 30 ℃ is poor, characterized by low ATP regeneration rate and weak operation stability. A low temperature induction strategy at 20 ℃ was thus adopted for efficient porcine interferon-α production in a 10 L fermentor. With the strategy, maximal methanol tolerance level could reach about 40 g/L to effectively deal with methanol concentration variations, so that the complicated on-line methanol measurement system could be eliminated. Moreover, metabolic analysis based on multiple state-variables measurements indicated that pIFN-α antiviral activity enhancement profited from the formation of an efficient ATP regeneration system at 20 ℃induction. Compared to the induction strategy at 30 ℃, the proposed strategy increased the ATP regeneration rate by 49-66%, the maximal pIFN-α antiviral activity was enhanced about 20-fold and reached a higher level of 1.5×106 IU/mL.
[References]
  1. Cereghino JL, Cregg JM, Fems Microbiol. Rev., 24, 45, 2000
  2. Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM, Yeast., 22, 249, 2005
  3. Chang HW, Jeng CR, Liu JJ, Lin TL, Chang CC, Chia MY, Tsai YC, Pang VF, Vet. Microbiol., 108, 167, 2005
  4. Chinsangaram J, Moraes MP, Koster M, Grubman MJ, J. Virol., 77, 1621, 2003
  5. Cereghino GP, Cereghino JL, Ilgen C, Cregg JM, Curr. Opin. Biotechnol., 13, 329, 2002
  6. Zhang T, Gong F, Peng Y, Chi ZM, Process. Biochem., 44, 1335, 2009
  7. Khatri NK, Hoffmann F, Biotechnol. Bioeng., 93(5), 871, 2006
  8. Nakano A, Lee CY, Yoshida A, Matsumoto T, Shiomi N, Katoh S, J. Biosci. Bioeng., 101(3), 227, 2006
  9. Hang HF, Chen W, Guo MJ, Chu J, Zhuang YP, Zhang S, Korean J. Chem. Eng., 25(5), 1065, 2008
  10. Mayson BE, Kilburn DG, Zamost BL, Raymond CK, Lesnicki GJ, Biotechnol. Bioeng., 81(3), 291, 2003
  11. Jahic M, Rotticci-Mulder JC, Martinelle M, Hult K, Enfors SO, Bioprocess Biosyst. Eng., 24, 385, 2002
  12. Yu RS, Dong SJ, Zhu YM, Jin H, Gao MJ, Duan ZY, Bioprocess Biosyst. Eng., 33, 473, 2010
  13. Wang Y, Wang ZH, Xu QL, Du GC, Hua ZZ, Liu LM, Li JH, Chen J, Process. Biochem., 44, 949, 2009
  14. Lee CY, Lee SJ, Jung KH, Katoh S, Lee EK, Process Biochem., 38, 1147, 2003
  15. Jungo C, Marison I, von Stockar U, J. Biotechnol., 130, 236, 2007
  16. Dragosits M, Stadlmann J, Albiol J, Baumann K, Maurer M, Gasser B, Sauer M, Altmann F, Ferrer P, Mattanovich D, J. Proteome Res., 8, 1380, 2009
  17. Zhao HL, Xue C, Wang Y, Yao XQ, Liu ZM, Appl. Microbiol. Biotechnol., 81(2), 235, 2008
  18. Jahic M, Wallberg F, Bollok M, Garcia P, Enfors SO, Microb. Cell Fact., 2, 6, 2003
  19. Zhang JG, Wang XD, Zhang JN, Wei DZ, J. Biosci. Bioeng., 105(4), 335, 2008
  20. Woo SH, Park SH, Lim HK, Jung KH, J. Ind. Microbiol.Biotechnol., 32, 474, 2005
  21. Li PZ, Anumanthan A, Gao XG, Ilangovan K, Suzara VV, Duzgunes N, Renugopalakrishnan V, Appl. Biochem. Biotechnol., 142(2), 105, 2007
  22. Suye S, Ogawa A, Yokoyama S, Obayashi A, Agric. Biol. Chem., 54, 1297, 1990
  23. Duan SB, Shi ZP, Feng HJ, Duan ZY, Mao ZG, Biochem. Eng. J., 30, 88, 2006
  24. Jin H, Zheng ZY, Gao MJ, Duan ZY, Shi ZP, Wang ZX, Jin J, Biochem. Eng. J., 37, 26, 2007
  25. Charoenrat T, Ketudat-Cairns M, Stendahl-Andersen H, Jahic M, Enfors SO, Bioprocess Biosyst. Eng., 27, 399, 2005
  26. Schroer K, Peter Luef K, Hartner FS, Glieder A, Pscheidt B, Metab. Eng., 12, 8, 2010
  27. van der Klei IJ, Yurimoto H, Sakai Y, Veenhuis M, Biochim. Biophys. Acta., 12, 1453, 2006