Issue
Korean Journal of Chemical Engineering,
Vol.28, No.6, 1380-1385, 2011
Studies on the hydrolysis of urea for production of ammonia and modeling for flow characterization in presence of stirring in a batch reactor using computational fluid dynamics
Ammonia is a highly volatile noxious material with adverse physiological effects, which becomes intolerable even at very low concentrations and presents substantial environmental and operating hazards and risk. But ammonia has long been known to be useful in the treatment of flue gases from the fossil fuel combustion process, such as in industrial furnaces, incinerators and coal-fired electric power generating plants. The present study is concerned with the methods and means to safely produce relatively small amount (i.e., up to 50 kg/hour) of ammonia. Current study involves experimental investigation for hydrolysis of urea for production of ammonia in a batch reactor at different temperature ranging from 110 ℃ to 180 ℃ against different initial feed concentration (10, 20, and 30 wt%) with different stirring speed ranging from 400 rpm to 1,400 rpm. Three-dimensional geometry and meshing of reactor is created in Gambit, a preprocessor of the commercial software, Fluent, for hydrodynamic study.
[References]
  1. Spokoyny FE, US Patent, 2006/0147361 A1, 2006
  2. Bhattacharya S, Peters HJ, Fisher J, Spencer HW, Urea-toammonia (U2ATM) systems: Operation and process chemistry, Proceedings of the 2003 Mega Symposium, 2003
  3. Salib R, Keeth R, Optimization of ammonia source for SCR applications, Proceedings of the 2003 Mega Symposium, 2003
  4. Baxter WA, J. Air Pollut. Contr. Assoc., 18, 817, 1968
  5. Dismukes EB, J. Air Pollut. Contr. Assoc., 25, 152, 1975
  6. Turner JR, Chone S, Dudukovic MP, Chem. Eng. Sci., 49(24), 4315, 1994
  7. Bai H, Biswas P, Keener TC, Ind. Eng. Chem. Res., 33(5), 1231, 1994
  8. Nakajima F, Hamada I, Catal. Today, 29(1-4), 109, 1996
  9. Shantakumar S, Singh DN, Phadke RC, Progress in Energy and Comb. Sci., 34, 685, 2008
  10. Spencer HW, Peters HJ, US Patent, 6,436,359 B1, 2002
  11. Park OH, Yoo GJ, Seung BJ, Korean J. Chem. Eng., 24(5), 717, 2007
  12. Kang M, Park JH, Choi JS, Park ED, Yie JE, Korean J. Chem. Eng., 24(1), 191, 2007
  13. Mok YS, Lee HW, Hyun YJ, Ham SW, Kim JH, Nam IS, Korean J. Chem Eng., 23, 888, 2001
  14. Yao J, Choi JS, Yang KS, Sun D, Chung JS, Korean J. Chem Eng., 18(3), 308, 2006
  15. Kang M, Choi JS, Kim YT, Park ED, Shin CB, Suh DJ, Yie JE, Korean J. Chem. Eng., 26(3), 884, 2009
  16. Cooper HBH, Spencer HW, US Patent, 6,730,280 B2, 2004
  17. Rahimpour MR, Chem. Eng. Process., 43(10), 1299, 2004
  18. Del Prato TA, Spicer HG, US Patent, 20050260108 A1, 2005
  19. Appl M, Ammonia: Principles and industrial practice, (Wiley-Vch), Weinheim, New York, 1999
  20. Wojichowski DL, US Patent, 2003/0211024 A1, 2003
  21. Glesmann RT, Titus JJ, H.G. Walker JR, US Patent, 2003/0118494 A1, 2003
  22. Jacob E, Stiermann E, US Patent, 2006/0045835 A1, 2006
  23. Young DC, US Patent, 5,252,308, 1993
  24. Hofmann L, Rusch K, US Patent, 6,471,927 B2, 2002
  25. Brooks B, Jessup WA, Macarthur BW, US Patent, 6,887,449 B2, 2005
  26. Jacob E, Stiermann E, US Patent, 2006/0045835 A1, 2006
  27. Sahu JN, Mahalik K, Patwardhan AV, Meikap BC, Ind. Eng. Chem. Res., 47(14), 4689, 2008
  28. Sahu JN, Mahalik KK, Patwardhan AV, Meikap BC, J. Hazard. Mater., 164(2-3), 659, 2009
  29. Sahu JN, Patwardhan AV, Meikap BC, Ind. Eng. Chem. Res., 48(5), 2705, 2009
  30. Mahalik K, Sahu JN, Patwardhan AV, Meikap BC, J. Hazard. Mater., 175(1-3), 629, 2010
  31. Schell LP, US Patent, 4,087,513, 1978
  32. Claudel B, Brousse E, Shehadeh G, Thermochim. Acta., 102, 357, 1986
  33. Isla MA, Irazoqui HA, Genoud CM, Ind. Eng. Chem. Res., 32, 2662, 1993
  34. Rudniak L, Machniewski PM, Milewska A, Molga E, Chem. Eng. Sci., 59(22-23), 5233, 2004
  35. Yapici H, Basturk G, Comput. Chem. Eng., 28(11), 2233, 2004
  36. Magnico P, Fongarland P, Chem. Eng. Sci., 61(4), 1217, 2006
  37. Sripriya R, Kaulaskar MD, Chakraborty S, Meikap BC, Chem. Eng. Sci., 62(22), 6391, 2007
  38. Cho JM, Choi JW, Hong SH, Kim KC, Na JH, Lee JY, Korean J. Chem. Eng., 23(1), 43, 2006