Issue
Korean Journal of Chemical Engineering,
Vol.28, No.6, 1359-1363, 2011
Direct synthesis of hydrogen peroxide from hydrogen and oxygen over palladium catalyst supported on SO3H-functionalized MCF silica: Effect of calcination temperature of mesostructured cellular foam silica
Palladium catalysts supported on SO3H-functionalized MCF silica (Pd/SO3H-MCF-T (T=450, 550, 650, 750, 850, and 950)) were prepared with a variation of calcination temperature (T, ℃) of MCF silica. They were then applied to the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Conversion of hydrogen, selectivity for hydrogen peroxide, and yield for hydrogen peroxide showed volcano-shaped curves with respect to calcination temperature of MCF silica. Yield for hydrogen peroxide increased with increasing acid density of Pd/SO3H-MCF-Tcatalysts. Thus, acid density of Pd/SO3H-MCF-T catalysts played an important role in determining the catalytic performance in the direct synthesis of hydrogen peroxide. Pd/SO3H-MCF-T catalysts efficiently served as an acid source and as an active metal catalyst in the direct synthesis of hydrogen peroxide.
[References]
  1. Samanta C, Appl. Catal. A: Gen., 350(2), 133, 2008
  2. Campos-Martin JM, Blanco-Brieva G, Fierro JLG, Angew. Chem. Int. Ed., 45, 6962, 2006
  3. Park S, Cho KM, Youn MH, Seo JG, Jung JC, Baeck SH, Kim TJ, Chung YM, Oh SH, Song IK, Catal. Commun., 9, 2485, 2008
  4. Park JY, Lee IH, Korean J. Chem. Eng., 26(2), 387, 2009
  5. Ghedini E, Menegazzo F, Signoretto M, Manzoli M, Pinna F, Strukul G, J. Catal., 273(2), 266, 2010
  6. Choudhary VR, Sansare SD, Gaikwad AG, Catal. Lett., 84(1-2), 81, 2002
  7. Choudhary VR, Samanta C, J. Catal., 238(1), 28, 2006
  8. Samanta C, Choudhary VR, Appl. Catal. A: Gen., 326(1), 28, 2007
  9. Han YF, Lunsford J, Catal. Lett., 99(1-2), 13, 2005
  10. Bernardotto G, Menegazzo F, Pinna F, Signoretto M, Cruciani G, Strukul G, Appl. Catal. A: Gen., 358(2), 129, 2009
  11. Park S, Lee SH, Song SH, Park DR, Baeck SH, Kim TJ, Chung YM, Oh SH, Song IK, Catal. Commun., 10, 391, 2009
  12. Sun M, Zhang J, Zhang Q, Wang Y, Wan H, Chem. Commun., 5174, 2009
  13. Park S, Park DR, Choi JH, Kim TJ, Chung YM, Oh SH, Song IK, J. Mol. Catal. A-Chem., 332(1-2), 76, 2010
  14. Park S, Baeck SH, Kim TJ, Chung YM, Oh SH, Song IK, J. Mol. Catal. A-Chem., 319(1-2), 98, 2010
  15. Hwang DH, Lee D, Lee H, Choe D, Lee SH, Lee K, Korean J. Chem. Eng., 27(4), 1087, 2010
  16. Van Rhijn WM, De Vos DE, Sels BF, Bossaert WD, Jacobs PA, Chem. Commun., 317, 1998
  17. Yang QH, Kapoor MP, Inagaki S, Shirokura N, Kondo JN, Domen K, J. Mol. Catal. A-Chem., 230(1-2), 85, 2005
  18. Yang QH, Liu J, Yang J, Kapoor MP, Inagaki S, Li C, J. Catal., 228(2), 265, 2004
  19. Shylesh S, Sharma S, Mirajkar SP, Singh AP, J. Mol. Catal. A-Chem., 212(1-2), 219, 2004
  20. Das D, Lee JF, Cheng SF, J. Catal., 223(1), 152, 2004
  21. Zhao XS, Lu GQ, Whittaker AK, Millar GJ, Zhu HY, J. Phys. Chem. B, 101(33), 6525, 1997
  22. Kim JM, Chang SM, Kong SM, Kim KS, Kim J, Kim WS, Ceram. Int., 35, 1015, 2009
  23. Seo JG, Youn MH, Cho KM, Park S, Lee SH, Lee J, Song IK, Korean J. Chem. Eng., 25(1), 41, 2008
  24. Vansant EF, Van Der Voort P, Vrancken KC, Characterization and chemical modification of the silica surface, Elsevier, Amsterdam, 1995
  25. Schmidt-Winkel P, Lukens WW Jr., Yang P, Margolese DI, Lettow JS, Ying JY, Stucky GD, Chem. Mater., 12, 685, 2000
  26. Kim H, Jung JC, Yeom SH, Lee KY, Yi J, Song IK, Mater. Res. Bull., 42, 2132, 2007
  27. Rac B, Molnar A, Forgo P, Mohai M, Bertoti I, J. Mol. Catal. A-Chem., 244(1-2), 46, 2006
  28. Dijs IJ, van Ochten HLF, van der Heijden AJM, Geus JW, Jenneskens LW, Appl. Catal. A: Gen., 241(1-2), 185, 2003
  29. Hanson RM, Sharpless KB, J. Org. Chem., 51, 1922, 1986