Issue
Korean Journal of Chemical Engineering,
Vol.28, No.6, 1340-1346, 2011
Modification of Ergun equation for application in trickle bed reactors randomly packed with trilobe particles using computational fluid dynamics technique
Based on a slit model, a pellet scale model has been developed for calculation of drag force imposed on trilobe catalyst particles in a packed bed reactor. The drag coefficient for single gas phase flow in a porous media has been calculated by CFD simulation and the results compared to the Ergun equation. The results show that the drag coefficient predicted by Ergun equation should be modified for various bed porosities, particle aspect ratio and gas densities. Therefore, a correction factor has been proposed to correct the Ergun equation constants in various conditions for trilobe particles. Comparison between the proposed corrected Ergun equation results and experimental data indicates considerable agreement.
[References]
  1. Attou A, Boyer C, Ferschneider G, Chem. Eng. Sci., 54(6), 785, 1999
  2. Boyer C, Volpi C, Ferschneider G, Chem. Eng. Sci., 62(24), 7026, 2007
  3. Lopes RJG, Quinta-Ferreira RM, Chem. Eng. J., 145(1), 112, 2008
  4. Yamada H, Goto S, Korean J. Chem. Eng., 21(4), 773, 2004
  5. Ahmadi Motlagh AH, Hashemabadi SH, Int. Commun. Heat Mass Transfer., 35, 1183, 2008
  6. Mirhashemi F, Hashemabadi SH, The 6th International Chemical Engineering Congress and Exhibition (IChEC), Kish Island, Iran, 2009
  7. Hashemabadi SH, Mirhashemi F, The 2nd National Conference on CFD Applications in Chemical Industries, Tehran, Iran, 2009
  8. Nemec D, Levec J, Chem. Eng. Sci., 60(24), 6947, 2005
  9. Nemec D, Levec J, Chem. Eng. Sci., 60(24), 6958, 2005
  10. Gunjal PR, Ranade VV, Chem. Eng. Sci., 62(18-20), 5512, 2007
  11. Julcour-Lebigue C, Augier F, Maffre H, Wilhelm AM, Delmas H, Ind. Eng. Chem. Res., 48(14), 6811, 2009
  12. Nguyen NL, Reimert R, Hardy EH, Chem. Eng. Technol., 29(7), 820, 2006
  13. Carbonell RG, Oil & Gas Sci. Technol., 55, 417, 2000
  14. Regupathi I, JagadeeshBabu PE, Chitra M, Murugesan T, Korean J. Chem. Eng., 27(4), 1205, 2010
  15. Koo SK, Korean J. Chem. Eng., 23(2), 176, 2006
  16. Lakota A, Levec J, Carbonell RG, AIChE J., 48(4), 731, 2002
  17. Iliuta I, Larachi F, Int. J. Chem. React. Eng., 3, R4, 2005
  18. Iliuta I, Larachi F, Al-Dahhan MH, Chem. Eng. Res. Des., 78(7), 982, 2000
  19. Iliuta I, Larachi F, Al-Dahhan MH, AIChE J., 46(3), 597, 2000
  20. Attou A, Ferschneider G, Chem. Eng. Sci., 55(3), 491, 2000
  21. Attou A, Ferschneider G, Chem. Eng. Sci., 54(21), 5031, 1999
  22. Gunjal PR, Kashid MN, Ranade VV, Chaudhari RV, Ind. Eng. Chem. Res., 44(16), 6278, 2005
  23. Lopes RJG, Quinta-Ferreira RM, Chem. Eng. Sci., 65(1), 291, 2010
  24. Macdonald IF, El-Sayed MS, Mow K, Dulllien FAL, Ind. Eng. Chem. Fund., 18, 199, 1979
  25. Attou A, Chem. Eng. Technol., 22(3), 221, 1999
  26. Singha S, Sinhamahapatra KP, Ocean Eng., 37, 757, 2010
  27. Mahbubar Rahman M, Mashud Karim M, Abdul Alim M, J. Naval Architec. Marine Eng., 4, 27, 2007
  28. Patankar SV, Numerical heat transfer and fluid flow, Taylor and Francis, 1980
  29. Cox RG, J. Fluid Mech., 44, 791, 1970
  30. Jayaweera K, Mason BJ, J. Fluid Mech., 22, 709, 1965
  31. Lopes RJG, Quinta-Ferreira RM, Chem. Eng. J., 147(2-3), 342, 2009
  32. Attou A, Boyer C, Ferschneider G, Chem. Eng. Sci., 54(6), 785, 1999
  33. Nemec D, Bercic G, Levec J, Ind. Eng. Chem. Res., 40(15), 3418, 2001