Issue
Korean Journal of Chemical Engineering,
Vol.14, No.1, 8-14, 1997
STRUCTURAL CHANGE OF POLYDOMAIN IN THE LIQUID CRYSTALLINE POLYMERS BY WEAK SHEAR FLOW
Steady-state shear stress(Ք12) and first normal stress difference(N1) of liquid crystalline polymers at low shear rates were examined by using a mesoscopic constitutive equation set including the idea of initial domain size. For the applicability to the weak shear flow at low shear rates, a Hinch-Leal closure approximation was adopted in the calculation of the constitutive equation set. The steady-state rheological behaviors predicted by adopting the Hinch-Leal approximation were compared with those by the Doi simple decoupling approximation. It could by predicted from the plot of N1 versus Ք12 that smaller domains distributed isotropically at a quiescent state might maintain the isotropic domain distribution even at the imposition of moderate shear rate, and then could be changed to the ordered (or partially elongated) domain phase by a further increase of shear rate. Such change of the polydomain structure with the increase in shear rate could be proved more precisely by the transient rheological behaviors of N1 and Ք12 after the start-up of shear flow.
[References]
  1. Burghardt WR, Fuller GG, J. Rheol., 34, 959, 1990
  2. Chow AW, Hamlin RD, Ylitalo CM, Macromolecules, 25, 7135, 1992
  3. Doi M, J. Polym. Sci. B: Polym. Phys., 19, 229, 1981
  4. Gleeson JT, Larson RG, Mead DW, Kiss G, Cladis PE, Liq. Cryst., 11, 341, 1992
  5. Graziano DJ, Mackley MR, Mol. Cryst. Liq. Cryst., 106, 73, 1984
  6. Grizzuti N, Cavella S, Cicarelli P, J. Rheol., 34, 1293, 1990
  7. Han CD, Jhon MS, J. Appl. Polym. Sci., 32, 3809, 1986
  8. Hongladarom K, Burghardt WR, Baek SG, Cementwala S, Magda JJ, Macromolecules, 26, 772, 1993
  9. Hongladarom K, Burghardt WR, Macromolecules, 27(2), 483, 1994
  10. Horio M, Kamei E, Uchimura H, Nihon Reoroji Gakkaishi, 13, 25, 1985
  11. Kim KM, Chung IJ, Macromol. Theory Simul., 5, 145, 1996
  12. Kim KM, Cho H, Chung IJ, J. Rheol., 38(5), 1271, 1994
  13. Kim SS, Han CD, Macromolecules, 26, 6633, 1993
  14. Kim SS, Han CD, J. Rheol., 37, 847, 1993
  15. Kulichikhin VG, "Rheological Properties of Liquid-Crystal Polymers," Liquid-Crystal Polymers, Plate, N.A., ed., Plenum Press, New York, 1993
  16. Kuzuu N, Doi M, J. Phys. Soc. Jpn., 52, 3486, 1983
  17. KuzuuN, Doi M, J. Phys. Soc. Jpn., 53, 1031, 1984
  18. Larson RG, Doi M, J. Rheol., 35, 539, 1991
  19. Larson RG, Maed DW, Gleeson JT, "Texture of a Liquid Crystalline Polymers during Shear," Proc. 11th Intern. Congr. Rheol., 65, 1992
  20. Larson RG, Mead DW, Liq. Cryst., 12, 751, 1992
  21. Larson RG, Mead DW, J. Rheol., 33, 1251, 1989
  22. Maffettone PL, Marrucci G, Mortier M, Moldenaers P, Mewis J, J. Chem. Phys., 100(10), 7736, 1994
  23. Marrucci G, Pure Appl. Chem., 57, 1545, 1985
  24. Marrucci G, "Rheology of Thermotropic Liquid Crystalline Polymer," Thermotropic Liquid Crystalline Polymer Blends, La Mantia, F.P., ed., Technomic Pub., Lancaster, 1993
  25. Marrucci G, J. Phys.: Condens. Matter, 6, A305, 1994
  26. Marrucci G, Greco F, J. Non-Newton. Fluid Mech., 44, 1, 1992
  27. Marrucci G, Greco F, "The Polydomain Problem in Nematics. How to Account for Spatial Gradients in Molecular Orientation," Proc. 11th Intern. Congr. Rheol., 545, 1992
  28. Marrucci G, Greco F, Adv. Chem. Phys., 86, 331, 1993
  29. Marrucci G, Maffettone PL, J. Rheol., 34, 1217, 1990
  30. Marrucci G, Maffettone PL, J. Rheol., 34, 1231, 1990
  31. Metzner AB, Prilutski GM, J. Rheol., 30, 661, 1986
  32. Moldenaers P, Mortier M, Mewis J, Chem. Eng. Sci., 49(5), 699, 1994
  33. Picken SJ, Aerts J, Doppert HL, Reuvers AJ, Northolt MG, Macromolecules, 24, 1366, 1991
  34. See H, Doi M, Larson RG, J. Chem. Phys., 92, 792, 1990
  35. Sigillo I, Grizzuti N, J. Rheol., 38(3), 589, 1994