Issue
Korean Journal of Chemical Engineering,
Vol.13, No.5, 530-537, 1996
PREPARATION OF SUPPORTED PALLADIUM MEMBRANE AND SEPARATION OF HYDROGEN
Palladium acetate was sublimed at a reduced pressure at 400℃, carried into the macropores of the porous wall of an α-alumina support tube and was decomposed there. A thin palladium membrane which was thus formed showed a hydrogen permeance of 10-6 mol m-2 s-1 Pa-1 and a hydrogen/nitrogen permselectivity higher than 1000. The membrane was stable against hydrogen embrittlement even when the permeation temperature was varied between 100 and 300℃, and it was stable to sulfur or chlorine. To test the ability of this system for the separation of hydrogen and deuterium, a palladium disk was used instead of the prepared membrane since a definite membrane thickness was necessary for calculation. When H2 and D2 permeated through the membrane independently, the H/D permselectivity was appro- ximately 7 at 150-200℃ under a feed side pressure of 0.4 MPa and a permeate side pressure of 0.1 MPa. When a mixture of H2 and D2 was fed, the H/D permselectivity was reduced to 1.2-1.6.
[References]
  1. Ali JK, Newson EJ, Rippin DW, J. Membr. Sci., 89(1-2), 171, 1994
  2. Athayde AL, Baker RW, Nguyen P, J. Membr. Sci., 94, 299, 1994
  3. Chai MR, Yamashita Y, Machida M, Eguchi K, Arai H, J. Membr. Sci., 97, 199, 1994
  4. Collins JP, Way JD, Ind. Eng. Chem. Res., 32, 3006, 1993
  5. Edlund DJ, Pledger WA, J. Membr. Sci., 77, 255, 1993
  6. Fort D, Farr JPG, Harris IR, J. Less-Common Met., 39, 293, 1975
  7. Gillespie LJ, Downs WR, J. Am. Chem. Soc., 61, 2496, 1939
  8. Gillespie LJ, Galstaun LS, J. Am. Chem. Soc., 58, 2565, 1936
  9. Holleck GL, J. Phys. Chem., 74, 503, 1970
  10. Itoh N, Xu WC, Haraya K, J. Membr. Sci., 66, 149, 1992
  11. Jayaraman V, Lin YS, Pakala M, Lin RY, J. Membr. Sci., 99(1), 89, 1995
  12. Jayaraman V, Lin YS, J. Membr. Sci., 104(3), 251, 1995
  13. Knapton AG, Platium Met. Rev., 21, 44, 1977
  14. Konno M, Shindo M, Sugawara S, Saito S, J. Membr. Sci., 37, 193, 1988
  15. Kusakabe K, Yokoyama S, Morooka S, Hayashi JI, Nagata H, Chem. Eng. Sci., 51(11), 3027, 1996
  16. Lee SJ, Yang SM, Park SB, J. Membr. Sci., 96(3), 223, 1994
  17. Li ZY, Maeda H, Kusakabe K, Morooka S, Anzai H, Akiyama S, J. Membr. Sci., 78, 247, 1993
  18. Mitsuishi N, Yuki T, Ichihara I, J. Less-Common Met., 89, 415, 1983
  19. Morooka S, Yan SC, Yokoyama S, Kusakabe K, Sep. Sci. Technol., 30(14), 2877, 1995
  20. Nagamoto H, Inoue H, Chem. Eng. Commun., 34, 315, 1985
  21. Nagamoto H, Inoue H, Nihon Kagaku Kaishi, 9, 1264, 1977
  22. Nishikawa M, to be published, 1996
  23. Peachey NM, Snow RC, Dye RC, J. Membr. Sci., 111(1), 123, 1996
  24. Shu J, Grandjean BPA, Van Neste A, Kaliaguine S, Can. J. Chem. Eng., 69, 1036, 1991
  25. Suzuki Y, Kimura S, J. Nucl. Sci. Technol., 26, 802, 1984
  26. Uemiya S, Matsuda T, Kikuchi E, J. Membr. Sci., 56, 315, 1991
  27. vanSwaay M, Birchenall CE, Trans. Metall. Soc. AIME, 218(Apr.), 285, 1960
  28. Wicke Von E, Nernst GH, Ber. Bunsenges. Physik. Chem., 68, 224, 1964
  29. Yan SC, Maeda H, Kusakabe K, Morooka S, Ind. Eng. Chem. Res., 33(3), 616, 1994