Issue
Korean Journal of Chemical Engineering,
Vol.28, No.4, 1120-1125, 2011
Formation of 1-D ZnTe nanocrystals by aerosol-assisted spray pyrolysis
One-dimensional (1-D) ZnTe nanowires were prepared by aerosol-assisted spray pyrolysis using a mixture of ZnO (1 mmol)/OA (4 mL)/TOPO (0.8 g)/ODE (4 mL) as Zn precursor and Te/TOP (3 mL of 0.75M) as Te precursor. The shape, size, and crystal structure of products were characterized by means of transmission electron microscope (TEM) and X-ray diffraction (XRD). The shape evolution of ZnTe nanocrystals from nanodots to nanowires was achieved by controlling the reaction temperature. ZnTe nanodots with average diameter of 8.3 nm were synthesized at 300 ℃ . “Earthworm-like” shaped ZnTe (linear ZnTe aggregates) consisting of primary ZnTe nanodots of about 16 nm in diameter were obtained at 400 ℃ . In addition, 1-D ZnTe nanowires were prepared at reaction temperature higher than 450 ℃ . Those experimental results suggest that ZnTe nanowires with zinc blende structure are formed from ZnTe nanodots by the oriented attachment due to insufficient surface capping of surfactant molecules and by strong dipole-dipole interaction of nanodots, followed by self-organization of linear aggregates at higher reaction temperatures. The linear ZnTe aggregates consisting of primary ZnTe nanodots may be an intermediate stage in the formation process of nanowires from nanodots.
[References]
  1. Peng XG, Manna L, Yang WD, Wickham J, Scher E, Kadavanich A, Alivisatos AP, Nature, 404(6773), 59, 2000
  2. Chen X, Nazzal A, Goorskey D, Xiao M, Peng ZA, Peng XG, Phys. Rev., B64, 245304, 2001
  3. Manna L, Scher EC, Alivisatos AP, J. Clust. Sci., 13, 521, 2002
  4. Jun YW, Seo JW, Oh SJ, Cheon J, Coord. Chem. Rev., 249, 1766, 2005
  5. Manna L, Scher EC, Alivisatos AP, J. Am. Chem. Soc., 122(51), 12700, 2000
  6. Peng ZA, Peng XG, J. Am. Chem. Soc., 124(13), 3343, 2002
  7. Pradhan N, Xu HF, Peng XG, Nano Lett., 6, 720, 2006
  8. Lee SH, Kim YJ, Park J, Chem. Mater., 19, 4670, 2007
  9. Prasad PN, Nanophotonics., Wiley-Interscience, New York, 2004
  10. Xu D, Shi X, Guo G, Gui L, Tang Y, J. Phys. Chem., B104, 5061, 2000
  11. Yang Q, Tang K, Wang C, Qian Y, Zhang S, J. Phys. Chem., B106, 9227, 2002
  12. Zhang XT, Liu Z, Ip KM, Leung YP, Li Q, Hark SK, J. Appl. Phys., 95, 5752, 2004
  13. Wu YY, Yang PD, J. Am. Chem. Soc., 123(13), 3165, 2001
  14. Cushing BL, Kolesnichenko VL, O'Connor CJ, Chem. Rev., 104(9), 3893, 2004
  15. Mahalingam T, John VS, Rajendran S, Sebastian PJ, Semicond. Sci. Technol., 17, 465, 2002
  16. Li L, Yang Y, Huang X, Li G, Zhang L, J. Phys. Chem., B109, 12394, 2005
  17. Crowder BL, Morehead FF, Wagner PR, Appl. Phys. Lett., 8, 148, 1966
  18. Bhunia S, Bose DN, J. Cryst. Growth., 186, 535, 1998
  19. Mingo N, Appl. Phys. Lett., 85, 5986, 2004
  20. Peng ZA, Peng XG, J. Am. Chem. Soc., 123(7), 1389, 2001
  21. Li L, Wu QS, Ding YP, Wang PM, Mater. Lett., 59, 1623, 2005
  22. Li YD, Ding Y, Wang ZY, Adv. Mater., 11(10), 847, 1999
  23. Jun YW, Choi CS, Cheon J, Chem. Commun., 101, 2001
  24. Yong KT, Sahoo Y, Zeng H, Swihart MT, Minter JR, Prasad PN, Chem. Mater., 19, 4108, 2007
  25. Wang FD, Dong AG, Sun JW, Tang R, Yu H, Buhro WE, Inorg. Chem., 45(19), 7511, 2006
  26. Fanfair DD, Korgel BA, Cryst. Growth Des., 8, 3246, 2008
  27. Meng QF, Jiang CB, Mao SX, J. Cryst. Growth, 310(20), 4481, 2008
  28. Kim DJ, Jang HD, Kim EJ, Koo KK, Ultramicroscopy., 108, 1278, 2008
  29. Kim DJ, Koo KK, Cryst. Growth Des., 9, 1153, 2009
  30. Okuyama K, Lenggoro IW, Tagami N, Tamaki S, Tohge N, J. Mater. Sci., 32(5), 1229, 1997
  31. Xia B, Lenggoro IW, Okuyama K, Adv. Mater., 13(20), 1579, 2001
  32. Didenko YT, Suslick KS, J. Am. Chem. Soc., 127(35), 12196, 2005
  33. Skrabalak SE, Suslick KS, J. Am. Chem. Soc., 127(28), 9990, 2005
  34. Huang Y, Zheng Z, Ai Z, Zhang L, Fan X, Zou Z, J. Phys. Chem., B110, 19323, 2006
  35. Zhang H, Swihart MT, Chem. Mater., 19, 1290, 2007
  36. Bucko MM, Oblakowski J, J. Eur. Ceram. Soc., 27, 3625, 2007
  37. Bang JH, Suh WH, Suslick KS, Chem. Mater., 20, 4033, 2008
  38. Chen HS, Lo B, Hwang JY, Chang GY, Chen CM, Tasi SJ, Wang SJJ, J. Phys. Chem., B1108, 17119, 2004
  39. Tang Z, Kotov NA, Giersig M, Science., 297, 237, 2002
  40. Yu JH, Joo J, Park HM, Baik SI, Kim YW, Kim SC, Hyeon T, J. Am. Chem. Soc., 127(15), 5662, 2005
  41. Lee EJH, Ribeiro C, Longo E, Leite ER, J. Phys. Chem., B109, 20842, 2005
  42. Lee SM, Jun YW, Cho SN, Cheon J, J. Am. Chem. Soc., 1124, 11244, 2002
  43. Lee SM, Cho SN, Cheon J, Adv. Mater., 15(5), 441, 2003
  44. Yu WW, Wang YA, Peng X, Chem. Mater., 15, 4300, 2003
  45. Peng XG, Adv. Mater., 15(5), 459, 2003