Issue
Korean Journal of Chemical Engineering,
Vol.12, No.5, 516-522, 1995
GROWTH MECHANISM OF MONODISPERSED TiO2 FINE PARTICLES BY THE HYDROLYSIS OF Ti(OC2H5)4
In order to investigate the growth mechanism of TiO2, the monodispersed TiO2 fine particles were prepared by hydrolysis of Ti(OC2H5)4 using the seed preparation method. Although it was impossible to grow TiO2 particles to more than 1 ㎛ with conventional liquid phase reaction method, we obtained monodispersed TiO2 fine particles of up to 2.5㎛. Nielsen’s chronomal analysis and Overbeek’s theory were applied to clarify the particle growth mechanism. The particle growth mechanism was found out as a first-order polynuclear layer growth mechanism and the growth rate constant, kp was about 6.45X10-6cm/s.
[References]
  1. Bailey JK, Mecartney ML, Colloids Surf., 63, 151, 1992
  2. Barringer EA, Bowen HK, J. Am. Ceram. Soc., 65(12), C199, 1982
  3. Barringer EA, Jubb N, Fegley B, Pober RL, Bowen HK, "Ultrastructure Processingof Advanced Ceramics," Wiley, New York, 1984
  4. Barringer EA, Bowen HK, Langmuir, 1, 414, 1985
  5. Bogush GH, Zukoski CF, "Ultrastructure Processing of Advanced Ceramics," Wiley, New York, 477, 1988
  6. Brinker C, Scherer J, George W, "Sol-Gel Science," Academic Press, San Diego, 1990
  7. Byers CH, Harris MT, "Ultrastructure Processing of Advanced Ceramics," Wiley, New York, 843, 1988
  8. Duonghong D, Borgarello E, Gratzel M, J. Am. Chem. Soc., 103, 4685, 1981
  9. Edelson LH, Glaeser AM, J. Am. Ceram. Soc., 71(4), 225, 1988
  10. Edelson LH, Glaeser AM, J. Am. Ceram. Soc., 71(4), C198, 1988
  11. Harris MT, Byers CH, J. Non-Cryst. Solids, 103, 49, 1988
  12. Hench LL, West JK, Chem. Rev., 90, 33, 1990
  13. Jean JH, Ring TA, Proc. Br. Ceram. Soc., 38, 11, 1984
  14. Jean JH, Ring TA, Am. Ceram. Soc. Bull., 65(12), 1574, 1986
  15. Lamer VK, Dinegar RH, J. Am. Chem. Soc., 72(11), 4847, 1950
  16. Matijevic E, Budmik M, Meites L, J. Colloid Interface Sci., 61(2), 302, 1977
  17. Messing GL, Minehan WT, J. Ceram. Soc. Jpn., 99(10), 1036, 1991
  18. Mohanty R, Bhandarkar S, Estrin J, AIChE J., 36(10), 1536, 1990
  19. Moller HJ, Welsch G, J. Am. Ceram. Soc., 68(6), 320, 1985
  20. Nakanishi K, Takamiya Y, J. Ceram. Soc. Jpn., 96(7), 719, 1988
  21. Ogihara T, Mizutani N, Kato M, J. Am. Ceram. Soc., 72(3), 421, 1989
  22. Okamura H, Barringer EA, Bowen HK, J. Am. Ceram. Soc., 69(2), C22, 1986
  23. Overbeek JG, J. Colloid Interface Sci., 58(2), 408, 1977
  24. Overbeek JG, Adv. Colloid Interface Sci., 15, 251, 1982
  25. Ragai J, Lotfi W, Colloids Surf., 61, 97, 1991
  26. Sacks MD, Tseng T, J. Am. Ceram. Soc., 67(8), 526, 1984
  27. Yan MF, Mater. Sci. Eng., 48, 53, 1981
  28. Yonemoto T, Takagi S, Doi T, Uchida F, Tadaki T, J. Chem. Eng. Jpn., 18(6), 887, 1992