Issue
Korean Journal of Chemical Engineering,
Vol.28, No.3, 954-963, 2011
Dynamic-mechanical behavior of polyethylenes and ethene/α-olefin-copolymers: Part II. α- and β-relaxation
Several ethylene homopolymers and ethene/α-olefin-copolymers with crystallinities ranging between 85 and 12% were characterized by dynamic-mechanical measurements. The occurring relaxations were correlated to the crystallinity of the polymeric materials and to morphology. The α-relaxation, being attributed to interlamellar shear, was found to be around 60 oC with activation energies of about 120 kJ/mol in samples with more than 42% crystallinity. The β-transition shows a much greater variety among the different samples characterized. Its relaxation temperatures vary between .40 and 10 oC with activation energies between 200 and 400 kJ/mol. The α- and β-relaxation of several quenched samples with crystallinities between 63 and 42% were found to overlap, thus producing bimodal maxima and different activation energies from the Arrhenius plots. A separation of these overlapping relaxations was only possible by measuring the relaxations over a frequency range of more than three orders of magnitude.
[References]
  1. Bensason S, Nazarenko S, Chum S, Hiltner A, Baer E, Polymer, 38(14), 3513, 1997
  2. Hartwig G, Polymer Properties at Room and Cryogenic Temperatures, New Yorkm Plenum Press, 1994
  3. Nitta KH, Tanaka A, Polymer, 42(3), 1219, 2001
  4. Boyd RH, Polymer., 26, 1123, 1985
  5. Boyd RH, Polymer., 26, 323, 1985
  6. Popli R, Glotin M, Mandelkern L, Benson RS, J. Polym. Sci. Part B: Polym. Phys., 22, 407, 1983
  7. Stadler FJ, Kaschta J, Munstedt H, Polymer, DOI: 10.1016/j.polymer.2005.07.099, 46(23), 10311, 2005
  8. Liu JP, Zhang FJ, Xie FC, Du BY, Fu Q, He TB, Polymer, 42(12), 5449, 2001
  9. Stadler FJ, Takahashi T, Yonetake K, e-Polymers., 40, 2009
  10. Stadler FJ, Takahashi T, Yonetake K, e-Polymers., 41, 2009
  11. Sirotkin RO, Brooks NW, Polymer, 42(24), 9801, 2001
  12. Matthews RG, Unwin AP, Ward IM, Capaccio G, Journal of Macromolecular Science-Physics., B38, 123, 1999
  13. Mandelkern L, The crystalline state, 2nd Ed., Chap. 4. Washington DC, ACS, 1993
  14. Stadler FJ, Muenstedt H, J. Rheol., DOI: 10.1122/ 1.2892039, 52(3), 697, 2008
  15. Stadler FJ, Piel C, Kaschta J, Rulhoff S, Kaminsky W, Munstedt H, Rheol. Acta, DOI: 10.1007/s00397-005-0042-6, 45(5), 755, 2006
  16. Stadler FJ, Piel C, Kaminsky W, Munstedt H, Macromolecular Symposia., DOI: 10.1002/masy.200650426, 236, 209, 2006
  17. Gabriel C, Munstedt H, Rheol. Acta, 41(3), 232, 2002
  18. Piel C, Stadler FJ, Kaschta J, Rulhoff S, Munstedt H, Kaminsky W, Macromol. Chem. Phys., DOI: 10.1002/macp. 200500321, 207, 26, 2006
  19. Stadler FJ, Piel C, Klimke K, Kaschta J, Parkinson M, Wilhelmt M, Kaminsky W, Munstedt H, Macromolecules, DOI: 10.1021/ma0514018, 39(4), 1474, 2006
  20. Graessley WW, Roovers J, Macromolecules., 12, 959, 1979
  21. Roovers J, Graessley WW, Macromolecules., 14, 766, 1981
  22. Godehardt R, Rudolph S, Lebek W, Goerlitz S, Adhikari R, Allert E, Giesemann J, Michler GH, J. Macromol. Sci. Phys., B38(5-6), 817, 1999
  23. Adhikari R, Godehardt R, Lebek W, Frangov S, Michler GH, Radusch H, Calleja FJB, Polym. Adv. Technol., 16(2-3), 256, 2005
  24. Rojas G, Berda EB, Wagener KB, Polymer, DOI 10.1016/j.polymer.2008.03.029, 49(13-14), 2985, 2008
  25. Glowinkowski S, Makrocka-Rydzyk M, Wanke S, Jurga S, European Polym. J., 38, 961, 2002
  26. Mader D, Heinemann J, Walter P, Mulhaupt R, Macromolecules, 33(4), 1254, 2000
  27. Starck P, Lofgren B, European Polym. J., 38, 97, 2002
  28. Dechter JJ, Axelson DE, Dekmezian A, Glotin M, Mandelkern L, J. Polym. Sci. Part B: Polym. Phys., 20, 641, 1982
  29. The interfacial regime is believed to be a rather thin layer on the border between the crystal lamellae and the amorphous regime.
  30. Resch JA, Stadler FJ, Kaschta J, Munstedt H, Macromolecules, DOI: 10.1021/ma9008719, 42(15), 5676, 2009
  31. Keßner U, Munstedt H, Kaschta J, Stadler FJ, Le Duff CS, Drooghaag X, Macromolecules., In press, DOI: 10.1021/ma100705f, 2010
  32. Chen X, Stadler FJ, Munstedt H, Larson RG, J. Rheol., 54(2), 393, 2010
  33. KeBner U, Munstedt H, Kaschta J, Stadler FJ, Le Duff CS, Drooghaag X, Macromolecules., DOI: 10.1021/ma100705f, 41(17), 7341, 2010
  34. Stadler FJ, Nishioka A, Stange J, Koyama K, Munstedt H, Rheol. Acta, DOI: 10.1007/s00397-007-0190-y, 46(7), 1003, 2007
  35. Stadler FJ, Gabriel C, Munstedt H, Macromol. Chem. Phys., DOI: 10.1002/macp.200700267, 208, 2449, 2007
  36. In other words, the material behaves thermorheologically complex, as several processes with different activation energies overlap each other. Thus, no master curve can be constructed, but instead a discussion about the relaxation time dependent activation energy would have to be conducted [30,33]. However, this complicated method does not have to be conducted, as E'' is a clearly separable peak, whose activation energy can, therefore, be determined with relative ease from the peak temperature.
  37. Determined as the difference quotient.
  38. Piel C, Starck P, Seppala JV, Kaminsky W, J. Polym. Sci. A: Polym. Chem., 44(5), 1600, 2006
  39. This value was adopted, as it is approximately the mean of the crystallinity of the neighboring samples.
  40. Piel C, Polymerizations of Ethene and Ethene-co-alpha-Olefin: Investigations on Short- and Long-Chain Branching and Structure Property Relationships. Department of Technical and Macromolecular Chemistry, Vol. Ph. D. Hamburg: University of Hamburg, 2005
  41. Piel C, Scharlach K, Kaminsky W, Macromolecular Symposia., 226, 25, 2005