Issue
Korean Journal of Chemical Engineering,
Vol.28, No.3, 939-948, 2011
Modifying GMA equation of state for description of (P, ρ, T) relation of gas and liquids over an extended pressure range
The main concern of this paper is on the improvement of the GMA equation of state (Fluid Phase Equilibr. 230 (2005) 170) which has been used for density calculation of components in liquid region with excellent accuracy. However, the GMA equation of state cannot predict the density of components in either the gas or gas-liquid transition region. The GMA equation of state is based on intermolecular potential energy; therefore, the potential energy of the GMA equation of state is corrected and an equation of state is obtained. The final form of the new equation of state is a regularity between (Z.1)v3 and ρ for all temperatures, which is based on modified Lennard-Jones potential (9, 6, 3). The capability of the new equation of state is examined by comparing the results with experimental data in homogeneous gas, homogeneous liquid and gas-liquid transition region from low to very high pressures. The new equation of state gives excellent results in homogeneous gas and homogeneous liquid region, while the predictions in the gas-liquid transition have more deviations. The average absolute deviation between calculated and experimental densities for 1979 data points of 24 components is 0.25% over the entire range of data with a maximum pressure of 1,000 MPa.
[References]
  1. Hwang J, Kim CH, Lim GB, Korean J. Chem. Eng., 12(2), 244, 1995
  2. Lim JS, Yoon CH, Yoo KP, Korean J. Chem. Eng., 26(6), 1754, 2009
  3. Parsafar G, Mason EA, J. Phys. Chem., 97, 9048, 1993
  4. Ghatee MH, Bahadori M, J. Phys. Chem. B, 105(45), 11256, 2001
  5. Goharshadi EK, Morsali A, Abbaspour M, Fluid Phase Equilib., 230(1-2), 170, 2005
  6. Goharshadi EK, Moosavi F, Fluid Phase Equilib., 238(1), 112, 2005
  7. Goharshadi EK, Abareshi M, Fluid Phase Equilib., 268(1-2), 61, 2008
  8. Goharshadi EK, Moosavi M, Ind. Eng. Chem. Res., 44(17), 6973, 2005
  9. Moosavi M, Goharshadi EK, Int. J. Thermophys., 27, 1515, 2006
  10. Goharshadi EK, Moosavi M, J. Mol. Liq., 142, 41, 2008
  11. Klimeck J, Kleinrahm R, Wagner W, J. Chem. Thermodyn., 30(12), 1571, 1998
  12. Klimeck J, Kleinrahm R, Wagner W, J. Chem. Thermodyn., 33(3), 251, 2001
  13. Younglove BA and Olien NA, Tables of Industrial Gas Container Contents and Density for Oxygen, Argon, Nitrogen, Helium, and Hydrogen, National Bureau of Standards Technical Note 1079, Washington, 1985
  14. Capla L, Buryan P, Jedelsky J, Rottner M, Linek J, J. Chem. Thermodyn., 34(5), 657, 2002
  15. Eggenberger R, Gerber S, Huber H, Searles D, Welker M, J. Chem. Phys., 99, 9163, 1993
  16. Robertson SL, Babb SE, J. Chem. Phys., 53, 1094, 1970
  17. Robertson SL, Babb SE, J. Chem. Phys., 51, 1357, 1969
  18. Troncoso J, Bessieres D, Cerdeirina CA, Carballo E, Romani L, J. Chem. Eng. Data., 49, 923, 2004
  19. Lugo L, Comunas MJP, Lopez ER, Fernandez J, Fluid Phase Equilib., 186(1-2), 235, 2001
  20. Gardas RL, Johnson I, Vaz DMD, Fonseca IMA, Ferreira AGM, J. Chem. Eng. Data., 52, 737, 2007
  21. Miyamoto H, Uematsu M, J. Chem. Thermodyn., 39(4), 588, 2007
  22. Miyake Y, Baylaucq A, Plantier F, Bessieres D, Ushiki H, Boned C, J. Chem. Thermodyn., 40(5), 836, 2008
  23. Tome LIN, Carvalho PJ, Freire MG, Marrucho IM, Fonseca IMA, Ferreira AGM, Coutinho JAP, Gardas RLJ, J. Chem. Eng. Data., 53, 1914, 2008
  24. Zuniga-Moreno A, Galicia-Luna LA, Camacho-Camacho LE, J. Chem. Thermodyn., 39(2), 254, 2007
  25. Vong WT, Tsai FN, J. Chem. Eng. Data, 42(6), 1116, 1997
  26. Grindley T, Lind JE, J. Chem. Phys., 54, 3983, 1971
  27. Gupta RB, Shim JJ, Solubility in Supercritical Carbon Dioxide, CRC Press, Florida, 2007
  28. Funke M, Kleinrahm R, Wagner W, J. Chem. Thermodyn., 34(12), 2001, 2002
  29. Duarte CMM, Guedes HJR, da Ponte MN, J. Chem. Thermodyn., 32(7), 891, 2000
  30. Glos S, Kleinrahm R, Wagner W, J. Chem. Thermodyn., 36(12), 1037, 2004