Issue
Korean Journal of Chemical Engineering,
Vol.28, No.3, 927-932, 2011
Sorptive removal and recovery of nickel(II) from an actual effluent of electroplating industry: Comparison between Escherichia coli biosorbent and Amberlite ion exchange resin
The removal and recovery of nickel(II) from wastewater of an electroplating factory was investigated using the waste Escherichia coli biomass as the biosorbent. The results were compared with those from using Amberlite IRN-150 as a commercial sorbent resin. The resin showed better performance with a qmax value of 30.48 mg/g compared to 26.45 mg/g for the biomass, as predicted by the Langmuir isotherm model. Kinetic experiments revealed that the biosorption equilibrium was attained within 15 min. In the recycling of the sorbents, the desorption of nickel(II) from Amberlite was only 50%, which is too low for the adsorption performance of the resin to be maintained at an economic level in subsequent cycles. In contrast, the biomass exhibited reasonable adsorption-desorption performance over three repeated cycles. The capability for repeated use of the sorbent over several cycles and for recovery of the metal ions is the main advantage of the waste biomass.
[References]
  1. Volesky B, Holan ZR, Biotechnol. Prog., 11(3), 235, 1995
  2. Selvakumari G, Murugesan M, Pattabi S, Sathishkumar M, Bull. Environ. Contam. Toxicol., 69, 195, 2002
  3. Mukherjee AL, Environmental Pollution and Health Hazardscauses and control, Golgotia publications, New Delhi, 1986
  4. Parker SP, Encyclopedia of Environmental Science, 2nd Ed. McGraw Hill, New York, 1980
  5. Selatnia A, Madani A, Bakhti MZ, Kertous L, Mansouri Y, Yous R, Miner. Eng., 17, 903, 2004
  6. Papadopoulos A, Fatta D, Parperis K, Mentzis A, Haralambous KJ, Loizidou M, Sep. Purif. Technol., 39(3), 181, 2004
  7. Bukhari N, Chaudry MA, Mazhar M, J. Membr. Sci., 283(1-2), 182, 2006
  8. Agrawal A, Manoj MK, Kumari S, Bagchi D, Kumar V, Pandey BD, Miner. Eng., 21, 1126, 2008
  9. Tanaka A, Huang Y, Yahagi T, Hossain MK, Sato Y, Narita H, Sep. Purif. Technol., 62(1), 97, 2008
  10. Puranik PR, Paknikar KM, J. Biotechnol., 55, 113, 1997
  11. Langmuir I, J. American Chem. Soc., 40, 1361, 1918
  12. Freundlich H, J. Phys. Chem., 57, 385, 1906
  13. Lagergren S, Svenska BK, Veterskapsakad Handlingar., 24, 1, 1898
  14. Ho YS, McKay G, Process Biochem., 34(5), 451, 1999
  15. Nadeem R, Ansari TM, Khalid AM, J. Hazard. Mater., 156(1-3), 64, 2008
  16. Das SK, Guha AK, Colloid Surf. B., 60, 46, 2007
  17. Pagnanelli F, Papini MP, Toro L, Trifoni M, Veglio F, Environ. Sci. Technol., 34, 2773, 2000
  18. Panda GC, Das SK, Guha AK, Collod Surf. B., 62, 173, 2008
  19. Won SW, Choi SB, Yun YS, Biochem. Eng. J., 28, 208, 2006
  20. Schiewer S and Volesky B, Biosorption processes for heavy metal removal, Environmental Microbe-Metal Interactions, ASM Press, Washington DC, 2002
  21. Vijayaraghavan K, Lee MW, Yun YS, Biochem. Eng. J., 41, 228, 2008
  22. Doyle FM, Liu ZD, J. Colloid Interface Sci., 258(2), 396, 2003
  23. Guangyu Y, Thiruvenkatachari V, Water Res., 37, 4486, 2003
  24. Mustafa I, Colloid Surf. B., 62, 97, 2008
  25. Padmavathy V, Bioresour. Technol., 99(8), 3100, 2008
  26. Zhen C, Wei M, Mei H, J. Hazard. Mater., 155, 357, 2008
  27. Hawari AH, Mulligan CN, Bioresour. Technol., 97(4), 692, 2006
  28. Al-Qodah Z, Desalination, 196(1-3), 164, 2006
  29. Ozer A, Ozer D, J. Hazard. Mater., 100(1-3), 219, 2003
  30. Deng S, Ting YP, Water Res., 39, 2167, 2005
  31. Catherine HN, Bohumil V, Daniel C, Water Res., 41, 2473, 2007
  32. Vijayaraghavan K, Clean., 36(3), 299, 2008
  33. Limousin G, Gaudet JP, Charletm L, Szenknect S, Barthes V, Krimissa M, Appl. Geochem., 22, 249, 2007
  34. Ho YS, Porter JF, McKay G, Water Air Soil Poll., 141, 1, 2002
  35. McKay G, Ho YS, Ng JCY, Sep. Purif. Methods, 28(1), 87, 1999
  36. Binupriya AR, Sathishkumar M, Swaminathan K, Jeong ES, Yun SE, Pattabi S, Bull. Environ. Contam. Toxicol., 77, 219, 2006
  37. Iqbal M, Saeed A, Process Biochem., 42, 148, 2007