Issue
Korean Journal of Chemical Engineering,
Vol.28, No.3, 902-913, 2011
Removal of hydrogen sulfide from methane using commercial polyphenylene oxide and Cardo-type polyimide hollow fiber membranes
The performance of commercially available poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) and Cardotype polyimide (PI) hollow fiber membranes was investigated in removing hydrogen sulfide from methane in a series of bench-scale experiments. It was observed that in the concentration range of hydrogen sulfide in methane from 101 to 401 ppm, the methane permeability decreased in the presence of hydrogen sulfide for Cardo-type polyimide hollow fiber membranes, whereas the PPO membrane performance was not affected. The separation coefficients of hydrogen sulfide/methane were 6 and 4 for PI and PPO membranes, respectively. Effects of temperature on the performance of PI and PPO membranes were investigated. It was observed that the permeabilities of both components of the mixture increased by increasing temperature, whereas the selectivities remained constant.
[References]
  1. Baker RW, Membrane technology and applications, 2nd Ed., John Wiley & Sons, Ltd., 2004
  2. Bhide BD, Stern SA, J. Membr. Sci., 81, 209, 1993
  3. Bhide BD, Stern SA, J. Membr. Sci., 81, 239, 1993
  4. Bhide BD, Voskericyan A, Stern SA, J. Membr. Sci., 140(1), 27, 1998
  5. Hao J, Rice PA, Stem SA, J. Membr. Sci., 209(1), 177, 2002
  6. Stern SA, Kawakami H, Houde AY, Zhou G, US Patent, 5,591,250, 1997
  7. Chatterjee G, Houde AA, Stern SA, J. Membr. Sci., 135(1), 99, 1997
  8. Lokhandwala KA and Baker RW, US Patent, 5,407,467, 1995
  9. Baker RW, Lokhandwala KA, US Patent, 5,558,698, 1996
  10. Klass DL and Landahl CD, US Patent, 4,561,864, 1985
  11. Chenar AP, Soltanieh M, Matsuura T, Tabe-Mohammadi A, Feng C, Sep. Purif. Technol., 51(3), 359, 2006
  12. Story BJ, Koros WJ, J. Membr. Sci., 67, 191, 1992
  13. Mortazavi S, PhD Thesis, University of Ottawa, 2004
  14. Aguilar-Vega M, Paul DR, J. Polym. Sci. B: Polym. Phys., 31, 1577, 1993
  15. Chowdhury G, Kruczek B and Matsuura T (Eds.), “Gas, Vapour and Liquid Separation,” Kluwer Academic Publishers, 2001
  16. Plate NA, Yampolskii Y, “High free volume polymers,” in: Paul DR, Yampolskii Y (Eds.), Polymer Gas Separation Membranes, CRC Press, London, 1994
  17. LEE AL, FELDKIRCHNER HL, STERN SA, HOUDE AY, GAMEZ JP, MEYER HS, Gas Sep. Purif., 9(1), 35, 1995
  18. Cooley TE and Coady AB, US Patent 4,130,403, 1978
  19. Kaldis SP, Kapantaidakis GC, Sakellaropoulos GP, J. Membr. Sci., 173(1), 61, 2000
  20. Lokhandwala KA , Baker RW, US Patent, 5,407,466, 1995
  21. Ismail AF, Lorna W, Sep. Purif. Technol., 27(3), 173, 2002
  22. Merkel TC, Toy LG, Macromolecules, 39(22), 7591, 2006
  23. Lin H, Wagner EV, Freeman BD, Toy LG, Gupta RP, Science., 311, 639, 2006
  24. Kanehashi S, Nakagawa T, Nagai K, Duthie X, Kentish S, Stevens G, J. Membr. Sci., 298(1-2), 147, 2007
  25. Visser T, Masetto N, Wessling M, J. Membr. Sci., 306(1-2), 16, 2007
  26. Xiao Y, Low BT, Hosseini SS, Chung TS, Paul DR, Prog. Polym. Sci., 34, 561, 2009
  27. Scholes CA, Kentish SE, Stevens GW, Sep. Purif. Technol. Rev., 38, 1, 2009
  28. Scholes CA, Stevens GW, Kentish SE, J. Membr. Sci., 350, 189, 2010
  29. Scholes CA, Chen GQ, Stevens GW, Kentish SE, J. Membr. Sci., 346(1), 208, 2010
  30. Basu S, Cano-Odena A, Vankelecom IFJ, Sep. Purif. Technol., 75, 15, 2010
  31. Omole IC, Adams RT, Miller SJ, Koros WJ, Ind. Eng. Chem. Res., 49(10), 4887, 2010
  32. Dietz WA, J. Gas Chromatogr., 5, 68, 1967