Issue
Korean Journal of Chemical Engineering,
Vol.28, No.3, 860-866, 2011
The role of environmental factors and medium composition on bacteriocin production by an aquaculture probiotic Enterococcus faecium MC13 isolated from fish intestine
The aim of this study was to optimize medium composition for higher yield of total viable cells and bacteriocin by Enterococcus faecium MC13. The factors such as peptone, meat extract, yeast extract, lactose, glycerol, tween 80, triammonium citrate and K2HPO4 were selected based on the Lactobacillus MRS medium composition. Two level factorial designs (FD) and steepest ascent path were performed to identify vital factors among the variables. Through the 2.8 FD, peptone, yeast extract and lactose were found to be significant factors involved in the enhanced production of viable cells and bacteriocin. Therefore, these three foremost factors were further optimized by central composite design to achieve efficient yield. The optimum MRS composition was found to be peptone (40.0 g/L), meat extract (30.0 g/L), yeast extract (40.0 g/L), lactose (24.0 g/L), glycerol (5.8 g/L), Tween 80 (3.0 g/L), triammonium citrate (1.0 g/L), K2HPO4 (2.5 g/L), MgSO4·7H2O (0.10 g/L), MnSO4·7H2O (0.05 g/L) and dipotassium PO4 (2.0 g/L). The optimized growth medium allowed higher amount of bacteriocin activity (36,100 AUml^(-1)) and total viable cells (14.22 LogCFUml^(-1)) production which were two-times higher than the commercial MRS medium.
[References]
  1. Reid G, Saunders ME, Gaskins HR, Gibson GR, Mercenier A, Rastall R, J. Clin Gastroenterol., 37, 105, 2003
  2. Nes IF, Diep DB, Havarstein LS, Brurberg MB, Eijsink V, Holo H, Antonie Van Leeuwenhoek., 70, 113, 1996
  3. Klaenhammer TT, FEMS Microb. Rev., 12, 39, 1993
  4. Choi HJ, Cheigh CI, Kim SB, Pyun YR, J. Appl. Microbiol., 88, 1, 2000
  5. Deegan LH, Cotter PD, Hill C, Ross P, Int. Dairy J., 16, 1058, 2006
  6. Hur JW, Hyun TH, Pyon YR, Kim TS, Yeo IH, Paik HD, J. Food Prot., 63, 1707, 2000
  7. Kim MH, Kong YJ, Beak H, Hyun HH, J. Biotechnol., 121, 54, 2006
  8. Leroy F, De Vuyst L, Appl. Environ. Microb., 69, 1093, 2003
  9. Zendo T, Eungruttanagorn N, Fujioka S, Tashiro Y, Nomura K, Sera Y, Kobayashi G, Nakayama J, Ishizaki A, Sonomoto K, J. Appl. Microbiol., 99(5), 1181, 2005
  10. Herranz C, Martinez JM, Rodriguez JM, Hernandez PE, Cintas LM, Appl. Microbiol. Biotechnol., 56(3-4), 378, 2001
  11. Settanni L, Valmorri S, Suzzi G, Corsetti A, Food Microb., 25, 722, 2008
  12. Anthony T, Rajesh T, Kayalvizhi N, Gunasekaran P, Bioresour Technol., 100, 872, 2008
  13. Swain SM, Chandrasekar S, Arul V, World J. Microbiol. Biotechnol., 25, 697, 2009
  14. Todorov SD, Dicks LMT, Enzym. Microb. Technol., 36, 326, 2005
  15. Prema P, Bharathy S, Palavesam M, Sivasubramanian M, Immanuel G, World J. Microb. Biotechnol., 22, 865, 2006
  16. Kabuki T, Uenishi H, Watanabe M, Seto Y, Nakajima H, J. Appl. Microbiol., 102(4), 971, 2007
  17. Todorov SD, Dicks LMT, Braz. J. Microb., 38, 166, 2007
  18. Abada EAE, Animal Cell. Systm., 12, 41, 2008
  19. Delgado A, Lopez FNA, Brito D, Peres C, Fevereiro P, Garrido-Fernandez A, J. Biotechnol., 130, 193, 2007
  20. Delgado A, Brito D, Peres C, Arroyo-Lopez FN, Garrido-Fernandez A, Food Microb., 22, 521, 2005
  21. Preetha R, Jeyaprakash NS, Philp R, Bright sigh IS, Bitechnol. Biopro. Eng., 12, 548, 2007
  22. Kayalvizhi N, Gunasekaran P, Lett. Appl. Microb., 47, 600, 2008
  23. Cho JH, Kim YP, Kim EK, Korean J. Chem. Eng., 26(3), 759, 2009
  24. Cladera-Olivera F, Caron GR, Brandelli A, Biochem. Eng. J., 21, 53, 2004
  25. Jimenez-Diaz R, Rios-Sanchez RM, Desmazeaud M, Ruiz-Barba JL, Piard JC, Appl. Environ. Microb., 59, 1416, 1993
  26. Pattnaik P, Kaushik JK, Grover S, Batish VK, J. Appl. Microbiol., 91(4), 636, 2001
  27. Cheigh CI, Choi HJ, Park H, Kim SB, Kook MC, Kim TS, Hwang JK, Pyun YT, J. Biotechnol., 95, 225, 2002
  28. Rodrigues L, Teixeira J, Oliveira R, Van der Mei HC, Process Biochem., 40, 1, 2006
  29. Marekova M, Laukova A, Skaugen M, Nes I, Ind. Microb. Biotechnol., 34, 537, 2007