Issue
Korean Journal of Chemical Engineering,
Vol.28, No.3, 853-859, 2011
Covalent crowding strategy for trypsin confined in accessible mesopores with enhanced catalytic property and stability
Chemically modified macromolecules were assembled with adsorptive trypsin in mesoporous silica foams (MCFs) to establish covalent linkage. Effects of catalytic properties and stability of immobilized trypsin were examined. The addition of chemically modified protein (BSA) and polysaccharide (ficoll) to the immobilized trypsin exhibited high coupled yield (above 90%) and relative activities (174.5% and 175.9%, respectively), showing no protein leaching after incubating for 10 h in buffers. They showed broader pH and temperature profiles, while the half life of thermal stability of BSA-modified preparation at 50℃ increased to 1.3 and 2.3 times of unmodified and free trypsin, respectively. The modified trypsin in aqueous-organic solvents exhibited 100% activity after 6 h at 50 ℃. The kinetic parameters of trypsin preparations and suitable pore diameter of MCFs warranted compatibility of covalent modification for substrate transmission. The covalent crowding modification for immobilized trypsin in nanopores establishes suitable and accessible microenvironment and renders possibility of biological application.
[References]
  1. Brady D, Jordaan J, Biotechnol. Lett., 31(11), 1639, 2009
  2. Sheldon RA, Adv. Synth. Catal., 349(8-9), 1289, 2007
  3. Lee SK, Park SW, Kim YI, Chung KH, Hong SI, Kim SW, Korean J. Chem. Eng., 19(2), 261, 2002
  4. Wang YJ, Caruso F, Chem. Mater., 17, 953, 2005
  5. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R, Enzyme Microb. Technol., 40(6), 1451, 2007
  6. Wang AM, Zhou C, Du ZQ, Liu MQ, Zhu SM, Shen SB, Ouyang PK, J. Biosci. Bioeng., 107(3), 219, 2009
  7. Liu T, Wang S, Chen G, Talanta., 77, 1767, 2009
  8. Jiang M, Guo ZH, J. Am. Chem. Soc., 129(4), 730, 2007
  9. Ellis RJ, Curr. Opin. Struc. Biol., 11, 114, 2001
  10. Zorrilla S, Rivas G, Acuna AU, Lillo MP, Protein Sci., 13, 2960, 2004
  11. Pessela BC, Mateo C, Filho M, Carrascosa AV, Fernandez-Lafuente R, Guisan JM, Process Biochem., 43, 193, 2008
  12. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R, Enzyme Microb. Technol., 40(6), 1451, 2007
  13. Schmidt-Winkel P, Lukens WW, Zhao DY, Yang PD, Chmelka BF, Stucky GD, J. Am. Chem. Soc., 121(1), 254, 1999
  14. Bradford MM, Anal. Biochem., 72, 248, 1987
  15. Lyubinskii GV, Kalinichenko EA, Tertykh VA, Theor. Exp.Chem., 28, 216, 1993
  16. Lopez-Gallego F, Betancor L, Mateo C, Hidalgo A, Alonso-Morales N, Dellamora-Ortiz G, Guisan JM, Fernandez-Lafuente R, J. Biotechnol., 119, 70, 2005
  17. Mateo U, Palomo JM, Fuentes M, Betancor L, Grazu V, Lopez-Gallego F, Pessela BCC, Hidalgo A, Fernandez-Lorente G, Fernandez-Lafuente R, Guisan JM, Enzyme Microb. Technol., 39(2), 274, 2006
  18. Kinjo AR, Takada S, Phys. Rev., 66, 031911, 2002
  19. Zhou C, Wang A, Du Z, Zhu S, Shen S, Korean J. Chem. Eng., 26(4), 1065, 2009
  20. Ellis RJ, Curr. Opin. Struc. Biol., 11, 114, 2001
  21. Soares M, De Castro HF, Santana MH, Zanin GM, Appl. Biochem. Biotechnol., 91-93, 703, 2001
  22. Cheung MS, Thirumalai D, J. Mol. Biol., 357, 632, 2006
  23. Minton AP, Curr. Opin. Struc. Biol., 10, 34, 2000
  24. Zhang ZD, He ZM, He MX, J. Mol. Catal. B-Enzym., 14, 85, 2001
  25. Boonyaratanakornkit BB, Park CB, Clark DS, Biochem. Biophys. Acta., 1595, 235, 2002
  26. Wang WG, Li PH, Shen SB, Ying HJ, Ouyang PK, Chinese J. Org. Chem., 26, 826, 2006