Issue
Korean Journal of Chemical Engineering,
Vol.28, No.3, 831-836, 2011
Consideration of the methods for evaluating the Cr(VI)-removing capacity of biomaterial
Over the last few decades, many researchers have tested various biomaterials for the removal of toxic Cr(VI) from aquatic systems. It is now widely accepted that the mechanism of Cr(VI) biosorption is not ‘anionic adsorption’ but ‘adsorption-coupled reduction’. Unfortunately, however, many researchers have still used common equilibrium isotherm models, such as Langmuir and Freundlich ones, based on ‘anionic adsorption’ mechanism in order to evaluate the Cr(VI)-removing capacity of biomaterial tested. In this study, a fermentation waste of Corynebacterium glutamicum, capable of removing Cr(VI) efficiently, was used as a model biomaterial to show why equilibrium isotherm models cannot be used to evaluate the Cr(VI)-removing capacity of biomaterial. Meanwhile, some alternative methods considering the mechanism of Cr(VI) biosorption were suggested; the maximum Cr(VI)-removing capacity of the biomaterial could be evaluated by a Cr(VI)-biosorption experiment under biomaterial-limited condition as well as by a simplified kinetic model based on the reduction mechanism of Cr(VI).
[References]
  1. Anderson RA, Regul. Toxicol. Pharmacol., 26, S35, 1997
  2. Costa M, Klein CB, Crit. Rev. Toxicol., 36, 155, 2006
  3. Mohan D, Pittman CU, J. Hazard. Mater., 137(2), 762, 2006
  4. Yoon J, Shim E, Joo H, Korean J. Chem. Eng., 26(5), 1296, 2009
  5. Choi J, Jung Y, Lee W, Korean J. Chem. Eng., 25(4), 764, 2008
  6. Park D, Yun YS, Park JM, Biotechnol. Bioproc. Eng., 15, 86, 2010
  7. Srivastava HCP, Mathur RP, Mehrotra I, Environ. Technol. Lett., 7, 55, 1986
  8. Deng S, Ting YP, Environ. Sci. Technol., 39, 8490, 2005
  9. Suksabye P, Thiravetyan P, Nakbanpote W, Chayabutra S, J. Hazard. Mater., 141(3), 637, 2007
  10. Nityanandi D, Subbhuraam CV, J. Hazard. Mater., 170(2-3), 876, 2009
  11. Moussavi G, Barikbin B, Chem. Eng. J., 162(3), 893, 2010
  12. Bankar AV, Kumar AR, Zinjarde SS, J. Hazard. Mater., 170(1), 487, 2009
  13. Gupta S, Babu BV, Chem. Eng. J., 150(2-3), 352, 2009
  14. Wang XS, Tang YP, Tao SR, Chem. Eng. J., 148(2-3), 217, 2009
  15. Baral SS, Das N, Chaudhury GR, Das SN, Hydrilla verticillata, J. Hazard. Mater, 171, 358, 2009
  16. Bingol A, Aslan A, Cakici A, J. Hazard. Mater., 161(2-3), 747, 2009
  17. Elangovan R, Philip L, Chandraraj K, Chem. Eng. J., 141(1-3), 99, 2008
  18. Chand R, Narimura K, Kawakita H, Ohto K, Watari T, Inoue K, J. Hazard. Mater., 163(1), 245, 2009
  19. Memon JR, Memon SQ, Bhanger MI, El-Turki A, Hallam KR, Allen GC, Colloid. Surf. B., 70, 232, 2009
  20. Singh KK, Hasan SH, Talat M, Singh VK, Gangwar SK, Chem. Eng. J., 151(1-3), 113, 2009
  21. Park D, Yun YS, Park JM, Chemosphere., 60, 1356, 2005
  22. Park D, Lim SR, Yun YS, Park JM, Chemosphere., 70, 298, 2007
  23. Park D, Yun YS, Park JM, Environ. Sci. Technol., 38, 4860, 2004
  24. Park D, Yun YS, Park JM, Water Res., 39, 533, 2005
  25. Park D, Yun YS, Kim JY, Park JM, Chem. Eng. J., 136(2-3), 173, 2008
  26. Langmuir I, J. Am. Chem. Soc., 40, 1361, 1918
  27. Freundlich H, Phys. Chem. Soc., 40, 1361, 1906
  28. Choi SB, Yun YS, Biotechnol. Lett., 26(4), 331, 2004
  29. Won SW, Choi SB, Chung BW, Park D, Park JM, Yun YS, Ind. Eng. Chem. Res., 43(24), 7865, 2004
  30. Clesceri LS, Greenberg AE, Eaton AD, Standard methods for the examination of water and wastewater., 20th Ed., American Public Health Association, American Water Work Association, and Water Environment Federation, Washington, 1998
  31. Kumar KV, Porkodi K, J. Hazard. Mater., 138(3), 633, 2006
  32. Park D, Lim SR, Yun YS, Park JM, Bioresour. Technol., 99, 8810, 2008