Issue
Korean Journal of Chemical Engineering,
Vol.28, No.3, 744-750, 2011
Direct conversion of cellulose into polyols or H2 over Pt/Na(H)-ZSM-5
The direct conversion of cellulose into polyols such as ethylene glycol and propylene glycol was examined over Pt catalysts supported on H-ZSM-5 with different SiO2/Al2O3 molar ratios. The Pt dispersion, determined by CO chemisorption and transmission electron microscopy (TEM), as well as the surface acid concentration measured by the temperature-programmed desorption of ammonia (NH3-TPD), increased with decreasing SiO2/Al2O3 molar ratio for Pt/H-ZSM-5. The total yield of the polyols, i.e., sorbitol, manitol, ethylene glycol and propylene glycol, generally increased with increasing Pt dispersion in Pt/H-ZSM-5. The one-pot aqueous-phase reforming of cellulose into H2 was also examined over the same catalysts. The Pt catalyst supported on H-ZSM-5 with a moderate SiO2/Al2O3 molar ratio and a large external surface area showed the highest H2 production rate. The Pt dispersion, surface acidity, external surface area and surface hydrophilicity appear to affect the catalytic activity for this reaction.
[References]
  1. Huber GW, Iborra S, Corma A, Chem. Rev., 106(9), 4044, 2006
  2. Dhepe PL, Fukuoka A, ChemSusChem., 1, 969, 2008
  3. Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K, Ind. Eng. Chem. Res., 39(8), 2883, 2000
  4. Deguchi S, Tsujii K, Horikoshi K, Green. Chem., 10, 191, 2008
  5. Fukuoka A, Dhepe PL, Angew. Chem. Int. Ed., 45, 5161, 2006
  6. Luo C, Wang S, Liu H, Angew. Chem. Int. Ed., 46, 7636, 2007
  7. Deng WP, Tan XS, Fang WH, Zhang QH, Wang Y, Catal. Lett., 133(1-2), 167, 2009
  8. Geboers J, Van de Vyver S, Carpentier K, de Blochouse K, Jacobs P, Sels B, Chem. Commun., 46, 3577, 2010
  9. Palkovits R, Tajvidi K, Procelewska J, Rinaldi R, Ruppert A, Green Chem., 12, 972, 2010
  10. Zhu Y, Kong ZN, Stubbs LP, Lin H, Shen S, Anslyn EV, Maguire JA, ChemSusChem., 3, 67, 2010
  11. Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Chen JG, Angew. Chem. Int. Ed., 47, 8510, 2008
  12. Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Shu Y, Stottlemyer AL, Chen JG, Catal. Today., 147, 77, 2009
  13. Zhang Y, Wang A, Zhang T, Chem. Commun., 46, 862, 2010
  14. Zheng MY, Wang AQ, Ji N, Pang JF, Wang XD, Zhang T, ChemSusChem., 3, 63, 2010
  15. Ding LN, Wang AQ, Zheng MY, Zhang T, ChemSusChem., 3, 818, 2010
  16. Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA, Appl. Catal. B: Environ., 43(1), 13, 2003
  17. Soares RR, Simonetti DA, Dumesic JA, Angew. Chem. Int. Ed., 45, 3982, 2006
  18. Huber GW, Cortright RD, Dumesic JA, Angew. Chem. Int. Ed., 43, 1549, 2004
  19. Davda RR, Dumesic JA, Chem. Commun., 10, 36, 2004
  20. Wen G, Xu Y, Xu Z, Tian Z, Catal. Commun., 11, 522, 2010
  21. You SJ, Kim SB, Kim YT, Park ED, Clean Technol., 16(1), 19, 2010
  22. Lippens BC, Linsen BG, de Boer JH, J. Catal., 3, 32, 1964
  23. Kim YT, Jung KD, Park ED, Micropor. Mesopor. Mater., 131, 28, 2010
  24. Treesukol P, Srisuk K, Limtrakul J, Truong TN, J. Phys. Chem. B, 109(24), 11940, 2005
  25. Sasaki M, Adschiri T, Arai K, AIChE J., 50(1), 192, 2004
  26. Onda A, Ochi T, Yanagisawa K, Green Chem., 10, 1033, 2008
  27. Abbadi A, Gotlieb KF, van Bekkum H, Starch., 50, 23, 1998
  28. Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K, Ind. Eng. Chem. Res., 39(8), 2883, 2000
  29. Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA, Appl. Catal. B: Environ., 56(1-2), 171, 2005
  30. Matsumura Y, Sasaki M, Okuda K, Takami S, Ohara S, Umetsu M, Adschiri T, Combust. Sci. Technol., 178(1-3), 509, 2006
  31. Cortright RD, Davda RR, Dumesic JA, Nature., 418, 964, 2002