Issue
Korean Journal of Chemical Engineering,
Vol.28, No.3, 723-730, 2011
Two-step continuous synthesis of tetraethylthiuram disulfide in microstructured reactors
We present two-step continuous synthesis of tetraethyl thiuram disulfide using microstructured reactors, starting with the formation of N, N-diethyldithiocarbamic acid from carbon disulfide and diethylamine in the first mi- crostructured reactor, and the oxidation of N, N-diethyldithiocarbamic acid by hydrogen peroxide in the second one. We studied the effects of reaction temperature, LHSV and total flow rate on the yield of the product. In the first microstructured reactor assembled with an HPIMM micromixer and a stainless steel capillary as the delay loop, the yield of N, N-diethyldithiocarbamic acid reached 96.3% in the 40 wt% diethylamine ethanol solution under reaction conditions of the CS2/(C2H5)2NH molar ratio of 1.1 : 1, total flow rate of 4 mL/min, LHSV of 42.4 h^(-1), and reaction temperature of 25 ℃. Consequently, the obtained N, N-diethyldithiocarbamic acid solution was reacted with H2O2 solution in another microstructured reactor assembled with SIMM-V2 and a PTFE capillary as the delay loop, the yield of the high purity tetraethylthiuram disulfide reached 89.3% under the optimized reaction conditions.
[References]
  1. Akiba M, Hashim AS, Prog. Polym. Sci., 22, 475, 1997
  2. Gradwell MHS, Grooff D, J. Appl. Polym. Sci., 83, 1119, 2001
  3. Akron AB and Tazuma JJ, US Patent, 4,144,272, 1979
  4. FLEXSYS, WO Patent, 0,050,393, 2000
  5. Torii S, Tanakea H and Mishima K, US Patent, 4,120,764, 1978
  6. Hessel V, Hofmann C, Lowe H, Meudt A, Scherer S, Schonfeld F, Werner B, Org. Process Res. Dev., 8, 511, 2004
  7. Hessel V, Hofmann C, Lob P, Lowe H, Parals M, Chem. Eng. Technol., 30(3), 355, 2007
  8. Benz K, Jackel KP, Regenauer KJ, Schiewe J, Drese K, Ehrfeld W, Hessel V, Lowe H, Chem. Eng. Technol., 24(1), 11, 2001
  9. Jahnisch K, Hessel V, Lowe H, Baerns M, Angew. Chem. Int. Ed., 43, 406, 2004
  10. Muller A, Drese K, Gnaser H, Hampe M, Hessel V, Lowe H, Schmitt S, Zapf R, Catal. Today, 81(3), 377, 2003
  11. Hessel V, Lowe H, Stange T, Lab Chip., 2, 14N, 2002
  12. Zhang X, Jones P, Haswell SJ, Chem. Eng. J., 135, S82, 2008
  13. Shui LL, Eijkel JCT, van den Berg A, Sens. Actuators, B., 121, 263, 2007
  14. Yoshida JI, Nagaki A, Yamada T, Chem. Eur. J., 14, 7450, 2008
  15. Mason BP, Price KE, Steinbacher JL, Bogdan AR, McQuade DT, Chem. Rev., 107(6), 2300, 2007
  16. Kobayashi J, Mori Y, Kobayashi S, Chem. Asian J., 1, 22, 2006
  17. Rumi L, Pfleger C, Spurr P, Klinkhammer U, Bannwarth W, Process Res. Dev., 13, 747, 2009
  18. Taghavi-Moghadam S, Kleemann A, Golbig KG, Process Res. Dev., 5, 652, 2001
  19. Kusakabe K, Morooka S, Maeda H, Korean J. Chem. Eng., 18(3), 271, 2001
  20. Lowe H, Hessel V, Lob P, Hubbard S, Process Res. Dev., 10, 1144, 2006
  21. van der Linden JJM, Hilberink PW, Kronenburg CMP, Kemperman GJ, Process Res. Dev., 12, 911, 2008
  22. Pelleter J, Renaud F, Process Res. Dev., 13, 698, 2009
  23. Sotowa KI, Miyoshi R, Lee CG, Kang Y, Kusakabe K, Korean J. Chem. Eng., 22(4), 552, 2005
  24. Yao XJ, Yao JF, Zhang LX, Xu NP, Catal. Lett., 132(1-2), 147, 2009
  25. Chen ZQ, Mod. Chem. Ind., 2, 25, 1991
  26. Hang DY, Ye K, Fine Chem. Intermed., 34, 54, 2004
  27. Kandlikar SG, Exp. Therm Fluid Sci., 26, 389, 2002