Issue
Korean Journal of Chemical Engineering,
Vol.28, No.3, 717-722, 2011
Preparation of well-dispersed and anti-oxidized Ni nanoparticles using polyamioloamine dendrimers as templates and their catalytic activity in the hydrogenation of p-nitrophenol to p-aminophenol
p-Aminophenol was synthesized by catalytic hydrogenation of p-nitrophenol on Ni nanoparticles prepared by a chemical reduction method using polyamidoamine (PAMAM) dendrimers as templates. The as-prepared Ni nanoparticles were characterized by XRD, LRS, EDS, FTIR, FESEM, HRTEM and N2 sorption analysis. Smaller-sized, better-dispersed and more active Ni nanoparticles can be successfully achieved using PAMAM dendrimers as templates. Analysis results show the as-prepared Ni nanoparticles are pure f.c.c. nickel. In hydrogenation reactions of p-nitrophenol, Ni nanoparticles show higher catalytic activity than that of Ni nanoparticles prepared in the absence of PAMAM dendrimers. The weight ratio of PAMAM/Ni2+ is proved to be an important parameter on the catalytic activity of Ni nanoparticles and the optimal ratio is 15%. The reason proposed for higher catalytic activity of Ni nanoparticles is a combination effect of smaller particle size, better dispersion and more active Ni nanoparticles.
[References]
  1. Chaudhari RV, Divekar SS, Vaidya MJ and Rode CV, Single step process for the preparation of p-aminophenol, US6028227, US, 2000
  2. Lee LT, Chen MH and Yao CN, Process for manufacturing paminophenol, US4885389, US, 1998
  3. Rode CV, Vaidya MJ, Jaganathan R, Chaudhari RV, Chem. Eng. Sci., 56(4), 1299, 2001
  4. Vaidya MJ, Kulkarni SM, Chaudhari RV, Org. Process Res.Dev., 7, 202, 2003
  5. Chen RZ, Du Y, Chen CL, Xing WH, Xu NP, Chen CX, Zhang ZL, J. Chem. Ind. Eng. (Chinese)., 54, 704, 2003
  6. Du Y, Chen HL, Chen RZ, Xu NP, Appl. Catal. A: Gen., 277(1-2), 259, 2004
  7. Du Y, Chen HL, Chen RZ, Xu NP, Chem. Eng. J., 125(1), 9, 2006
  8. Chen RZ, Wang QQ, Du Y, Xing WH, Xu NP, Chem. Eng. J., 145(3), 371, 2009
  9. Lu HH, Yin HB, Liu YM, Jiang TS, Yu LB, Catal. Commun., 10, 313, 2008
  10. Ma ZY, Zhang LX, Chen RZ, Xing WH, Xu NP, Chem. Eng. J., 138(1-3), 517, 2008
  11. Zheng HG, Liang JH, Zeng JH, Qian YT, Mater. Res. Bull., 36(5-6), 947, 2001
  12. Nandi A, Gupta MD, Banthia AK, Mater. Lett., 52, 203, 2002
  13. Houa Y, Gao S, J. Mater. Chem., 13, 1510, 2003
  14. Yu K, Kim DJ, Chung HS, Liang H, Mater. Lett., 57, 3992, 2003
  15. Wang AL, Yin HB, Lu HH, Xue JJ, Ren M, Jiang TS, Langmuir, 25(21), 12736, 2009
  16. Esfand R, Tomalia DA, Drug Discovery Today., 6, 427, 2001
  17. Stiriba SE, Frey H, Haag R, Angew. Chem. Int. Ed., 41, 1329, 2002
  18. Auten BJ, Hahn BP, Vijayaraghavan G, Stevenson KJ, Chandler BD, J. Phys. Chem. C., 112, 5365, 2008
  19. Jiang YJ, Gao QM, J. Am. Chem. Soc., 128(3), 716, 2006
  20. Knecht MR, Garcia-Martinez JC, Crooks RM, Langmuir, 21(25), 11981, 2005
  21. Reynhardt JPK, Yang Y, Sayari A, Alper H, Chem. Mater., 16, 4095, 2004
  22. Hendricks TR, Dams EE, Wensing ST, Lee I, Langmuir, 23(13), 7404, 2007
  23. Rar A, Zhou JN, Liu WJ, Barnard JA, Bennett A, Street SC, Appl. Surf. Sci., 175, 134, 2001
  24. Knecht MR, Garcia-Martinez JC, Crooks RM, Chem. Mater., 18, 5039, 2006
  25. Tomalia DA, Baker H, Dewald JR, Hall MJ, Kallos G, Martin SJ, Roeck J, Ryder J, Smith P, Polym. J. (Japan)., 17, 117, 1985
  26. Desilvestro J, Corrigan DA, J. Electrochem. Soc., 135, 885, 1988
  27. Liu ZL, Wang XD, Wu HY, Li CX, J. Colloid Interface Sci., 287(2), 604, 2005