Issue
Korean Journal of Chemical Engineering,
Vol.28, No.3, 633-642, 2011
Microfluidic extraction using two phase laminar flow for chemical and biological applications
We review the state of the art in microfluidic separation technique based two-phase laminar flow with an application focus on chemical and biological sample. As we describe herein, two-phase laminar flow in the microfluidic extraction has several biological and engineering advantages over other methods including high reproducibility, biocompatibility, and selectivity. We review advances in applications of two-phase laminar flow and examine key parameters such as flow rate, phase composition, and surface charge property, how these can affect extract performance with the technology including microfluidic separation system. A special technology focus is given to emerging novel integrative microfluidic extraction, which aims to merge aqueous phase laminar flow and electric field technologies into simple packages. We conclude with a brief discussion of some of the emerging challenges in the field and some of the approaches that are likely to enhance their application.
[References]
  1. Albertsson PA, Nature., 177, 771, 1956
  2. Walter H, Krob EJ, J. Chromatogr., 479, 307, 1989
  3. Walter H, Krob EJ, Brooks DE, Biochemistry., 15, 2959, 1976
  4. Pinilla M, Delafuente J, Garciaperez AI, Jimeno P, Sancho P, Luque J, J. Chromatogr. A., 668, 165, 1994
  5. Benavides J, Aguilar O, Lapizco-Encinas BH, Rito-Palomares M, Chem. Eng. Technol., 31(6), 838, 2008
  6. Akama Y, Ito M, Tanaka S, Talanta., 53, 645, 2000
  7. Akama Y, Sali A, Talanta., 57, 681, 2002
  8. Yoshikuni N, Baba T, Tsunoda N, Oguma K, Talanta,, 66, 40, 2005
  9. Cunha MT, Costa MJL, Calado CRC, Fonseca LP, Aires-Barros MR, Cabral JMS, J. Biotechnol., 100, 55, 2003
  10. Everberg H, Sivars U, Emanuelsson C, Persson C, Englund AK , Haneskog L, Lipniunas P, Jornten-Karlsson M, Tjerneld F, J.Chromatogr. A., 1029, 113, 2004
  11. Johansson HO, Ishii M, Minaguti M, Feitosa E, Penna TCV, Pessoa A, Sep. Purif. Technol., 62(1), 166, 2008
  12. Rosa PAJ, Azevedo AM, Ferreira IF, Sommerfeld S, Backer W, Aires-Barros MR, J. Chromatogr. A., 1216, 8741, 2009
  13. Meagher RJ, Light YK, Singh AK, Lab on a Chip., 8, 527, 2008
  14. Kumar A, Kamihira M, Galaev IY, Mattiasson B, Iijima S, Biotechnol. Bioeng., 75(5), 570, 2001
  15. Bradley AJ, Scott MD, J. Chromatography B-Analytical Technologies in the Biomedical and Life Sciences., 807, 163, 2004
  16. Frerix A, Muller M, Kula MR, Hubbuch J, Biotechnol. Appl. Biochem., 42, 57, 2005
  17. Kepka C, Rhodin J, Lemmens R, Tjerneld F, Gustavsson PE, J. Chromatogr. A., 1024, 95, 2004
  18. Ribeiro SC, Monteiro GA, Cabral JMS, Prazeres DMF, Biotechnol. Bioeng., 78(4), 376, 2002
  19. Trindade IP, Diogo MM, Prazeres DMF, Marcos JC, J.Chromatogr. A., 1082, 176, 2005
  20. Frerix A, Schonewald M, Geilenkirchen P, Muller M, Kula MR, Hubbuch J, Langmuir, 22(9), 4282, 2006
  21. Frerix A, Geilenkirchen P, Muller M, Kula MR, Hubbuch J, Biotechnol. Bioeng., 96(1), 57, 2007
  22. Gomes GA, Azevedo AM, Aires-Barros MR, Prazeres DMF, Sep. Purif. Technol., 65(1), 22, 2009
  23. Mashayekhi F, Meyer AS, Shiigi SA, Nguyen V, Kamei DT, Biotechnol. Bioeng., 102(6), 1613, 2009
  24. Luechau F, Ling TC, Lyddiatt A, Process Biochem., 45, 1432, 2010
  25. Kepka C, Lemmens R, Vasi J, Nyhammar T, Gustavsson PE, J. Chromatogr. A., 1057, 115, 2004
  26. Lee EZ, Huh YS, Jun YS, Won HJ, Hong YK, Park TJ, Lee SY, Hong WH, J. Chromatogr. A., 1187, 11, 2008
  27. SooHoo JR, Walker GM, Biomedical Microdevices., 11, 323, 2009
  28. Tsukamoto M, Taira S, Yamamura S, Morita Y, Nagatani N, Takamura Y, Tamiya E, Analyst., 134, 1994, 2009
  29. Nam KH, Chang WJ, Hong H, Lim SM, Kim DI, Koo YM, Biomedical Microdevices., 7, 189, 2005
  30. Rodrigues GD, de Lemos LR, da Silva LHM, da Silva MDH, Minim LA, Coimbra JSD, Talanta., 80, 1139, 2010
  31. Flory PJ, J. Chem. Phys., 10, 1942
  32. Huggins ML, J. Chem. Phys., 46, 1942
  33. Walter H, Brooks DE, Fisher D, Partitioning in Aqueous Two Phase Systems; Theory, Methods, Uses, and Applications to Biotechnology, Academic Press, Inc., 1985
  34. Edmond E, Ogston AG, Biochem. J., 109, 1968
  35. Haynes CA, Beynon RV, King RS, Blanch HW, Prausnitz JM, J. Phys. Chem., 93, 5612, 1989
  36. King RS, Blanch HW, Prausnitz JM, AIChE J., 34, 1585, 1988
  37. Cabezas HJ, Kabiri-Badr M, Szlag DC, Bioseparation., 1, 227, 1990
  38. Walter H, Johansson G, Brooks DE, Anal. Biochem., 197, 1, 1991
  39. Grossman PD, Gainer JL, Biotechnol. Progress., 4, 6, 1988
  40. Kim CW, Vol. Ph. D., MIT, 1987
  41. Kang CH, Sandler SI, Fluid Phase Equilib., 38, 1987
  42. Hatti-Kaul R, Ed., Aqueous Two-Phase Systems, Methods and Protocols, Humana Press Inc., Totowa, 2000
  43. Baski JN, Hatton TA, Suter UW, Macromolecules., 20, 1300, 1987
  44. Johansso G, Acta Chemica Scandinavica Series B-Organic Chemistry and Biochemistry B., 28, 873, 1974
  45. Andrews BA, Asenjo JA, Sep. Sci. Technol., 45, 2165, 2010
  46. Xiao H, Liang D, Liu GC, Guo M, Xing WL, Cheng J, Lab on a Chip., 6, 1067, 2006
  47. Yamada M, Kasim V, Nakashima M, Edahiro J, Seki M, Biotechnol. Bioeng., 88(4), 489, 2004
  48. Surmeian M, Slyadnev MN, Hisamoto H, Hibara A, Uchiyama K, Kitamori T, Anal. Chem., 74, 2014, 2002
  49. Munchow G, Schonfeld F, Hardt S, Graf K, Langmuir, 24(16), 8547, 2008
  50. Mu XA, Liang QL, Hu P, Ren KN, Wang YM, Luo GA, Microfluidics and Nanofluidics., 9, 365, 2010
  51. Feng XJ, Du W, Luo QM, Liu BF, Analytica Chimica Acta., 650, 83, 2009
  52. Feng Y, Wang M, Progress Chem., 18, 966, 2006
  53. Maruyama T, Matsushita H, Uchida J, Kubota F, Kamiya N, Goto M, Anal. Chem., 76, 4495, 2004
  54. Hibara A, Nonaka M, Hisamoto H, Uchiyama K, Kikutani Y, Tokeshi M, Kitamori T, Anal. Chem., 74, 1724, 2002
  55. Maruyama T, Uchida J, Ohkawa T, Futami T, Katayama K, Nishizawa K, Sotowa K, Kubota F, Kamiyaa N, Goto M, Lab on a Chip., 3, 308, 2003
  56. Hibara A, Tokeshi M, Uchiyama K, Hisamoto H, Kitamori T, Anal. Sci., 17, 89, 2001
  57. Smirnova A, Shimura K, Hibara A, Proskurnin MA, Kitamori T, Anal. Sci., 23, 103, 2007
  58. Reddy V, Zahn JD, J. Colloid Interface Sci., 286(1), 158, 2005
  59. Hibara A, Iwayama S, Matsuoka S, Ueno M, Kikutani Y, Tokeshi M, Kitamori T, Analy. Chem., 77, 943, 2005
  60. Huh YS, Yang K, Hong YK, Jun YS, Hong WH, Kim DH, Process Biochem., 42, 649, 2007
  61. Huh YS, Park TJ, Yang K, Lee EZ, Hong YK, Lee SY, Kim DH, Hong WH, Ultramicroscopy., 108, 1365, 2008
  62. Negrete A, Ling TC, Lyddiatt A, J. Chromatography B-Analytical Technologies in the Biomedical and Life Sci., 854, 13, 2007
  63. Wu YT, Zhu ZQ, Chem. Eng. Sci., 54(4), 433, 1999
  64. Tagawa T, Aljbour S, Matouq M, Yamada H, Chem. Eng. Sci., 62(18-20), 5123, 2007
  65. Maruyama T, Kaji T, Ohkawa T, Sotowa K, Matsushita H, Kubota F, Kamiya N, Kusakabe K, Goto M, Analyst., 129, 1008, 2004
  66. Yamakawa T, Oshite H, Katayama K, Futami T, Ohkawa T, Nishizawa K, Kagaku Kogaku Ronbunshu., 30, 95, 2004
  67. Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I, Microfluidics and Nanofluidics., 7, 217, 2009
  68. Zhao YC, Chen GW, Yuan Q, AIChE J., 53(12), 3042, 2007
  69. Huh YS, Jeong CM, Chang HN, Lee SY, Hong WH, Park TJ, Biomicrofluidics., 4, 2010
  70. Liu JH, Chen X, Shao ZZ, Zhou P, J. Appl. Polym. Sci., 90(4), 1108, 2003
  71. Walter H, Krob EJ, Pedram A, Cell Biophysics., 4, 273, 1982
  72. Gerson DF, Scheer D, Biochimica Et Biophysica Acta., 602, 506, 1980
  73. Huh D, Bahng JH, Ling YB, Wei HH, Kripfgans OD, Fowlkes JB, Grotberg JB, Takayama S, Anal. Chem., 79, 1369, 2007
  74. Yamada M, Nakashima M, Seki M, Anal. Chem., 76, 5465, 2004
  75. Zhang XL, Cooper JM, Monaghan PB, Haswell SJ, Lab on a Chip., 6, 561, 2006
  76. Yamada M, Seki M, Lab on a Chip., 5, 1233, 2005
  77. Yamada M, Seki M, Analy. Chem., 78, 1357, 2006
  78. Jaggi RD, Sandoz R, Effenhauser CS, Microfluidics and Nanofluidics., 3, 47, 2007
  79. Yang S, Undar A, Zahn JD, Lab on a Chip., 6, 871, 2006
  80. Shevkoplyas SS, Yoshida T, Munn LL, Bitensky MW, Anal. Chem., 77, 933, 2005
  81. Ueno K, Kim HB, Kitamura N, Anal. Sci., 19, 391, 2003
  82. Hannig K, J. Chromatogr., 159, 183, 1978
  83. Raymond DE, Manz A, Widmer HM, Analy. Chem., 66, 2858, 1994
  84. Raymond DE, Manz A, Widmer HM, Analy. Chem., 68, 2515, 1996
  85. Fonslow BR, Barocas VH, Bowser MT, Anal. Chem., 78, 5369, 2006
  86. Zhang CX, Manz A, Anal. Chem., 75, 5759, 2003
  87. Xu Y, Zhang CX, Janasek D, Manz A, Lab on a Chip., 3, 224, 2003
  88. Macounova K, Cabrera CR, Yager P, Anal. Chem., 73, 1627, 2001
  89. Cabrera CR, Yager P, Electrophoresis, 22(2), 355, 2001
  90. Lu H, Gaudet S, Schmidt MA, Jensen KF, Anal. Chem., 76, 5705, 2004
  91. Munchow G, Hardt S, Kutter JP, Drese KS, Lab on a Chip., 7, 98, 2007
  92. Clark WM, Chemtech., 22, 425, 1992
  93. Marando MA, Clark WM, Sep. Sci. Technol., 28, 1561, 1993
  94. Theos CW, Clark WM, Appl. Biochem. Biotechnol., 54(1-3), 143, 1995
  95. Levine ML, Bier M, Electrophoresis., 11, 605, 1990
  96. Levine ML, Cabezas H, Bier M, J. Chromatogr., 607, 113, 1992