Issue
Korean Journal of Chemical Engineering,
Vol.28, No.2, 531-538, 2011
Statistical optimization of process conditions for photocatalytic degradation of phenol with immobilization of nano TiO2 on perlite granules
Response surface methodology (RSM) using D-optimal design was applied to optimization of photocatalytic degradation of phenol by new composite nano-catalyst (TiO2/Perlite). Effects of seven factors (initial pH, initial phenol concentration, reaction temperature, UV irradiation time, UV light intensity, catalyst calcination temperature, and dosage of TiO2/perlite) on phenol conversion efficiency were studied and optimized by using the statistical software MODDE 8.02. On statistical analysis of the results from the experimental studies, the optimum process conditions were as follows: initial pH, 10.7; initial phenol concentration, 0.5 mM; reaction temperature, 27 ℃; UV irradiation time, 6.5 h; UV light intensity, 250W; catalyst calcination temperature, 600 ℃; and TiO2/perlite dosage, 6 g/L. Analysis of variance (ANOVA) showed a high coefficient of determination (R2) of 91.8%.
[References]
  1. Vione D, Minero C, Maurino V, Carlotti AE, Picatonotto T, Pelizzetti E, Appl. Catal. B: Environ., 58(1-2), 79, 2005
  2. Peiro AM, Ayllon JA, Peral J, Domenech X, Appl. Catal. B: Environ., 30(3-4), 359, 2001
  3. Wu C, Liu X, Wei D, Fan J, Wang L, Water Res., 35, 3927, 2001
  4. Ding Z, Hu XJ, Lu GQ, Yue PL, Greenfield PF, Langmuir, 16(15), 6216, 2000
  5. Eggins B, Byrne JA, Dunlop PM, Davidson A, Top. Issue Glass., 3, 57, 1999
  6. Vohra MS, Tanaka K, Environ. Sci. Technol., 35, 411, 2001
  7. Vigil E, Zumeta I, Espinosa R, Nunez C, Ayllon JA, Saadoun L, Domenech X and Rodriguez-Clemente R, Surf. Sci. Its Appl., Proc. Lat. Am. Congr., 9th, Eds. Osvaldo De Melo, and Isaac Hernandez- Calderon, 146-155, Singapore, Singapore: World Scientific Publishing Co. Pte. Ltd., 2000
  8. Barakat MA, Tseng JM, Huang CP, Appl. Catal. B: Environ., 59(1-2), 99, 2005
  9. Koike H, Oki Y, Takeuchi Y, Mater. Res. Soc. Symp. Proc., 549, 141, 1999
  10. Hosseini SN, Borghei SM, Vossoughi M, Taghavinia N, Appl. Catal. B: Environ., 74(1-2), 53, 2007
  11. Martendal E, Budziak D, Carasek E, J. Chromatogr. A., 1148, 131, 2007
  12. Mohan SV, Sirisha K, Rao RS, Sarma PN, Ecotoxicol. Environ. Saf., 68, 252, 2007
  13. Myers RH, Montgomery DC, Response surface methodology: Process and product optimization using designed experiments., John Wiley & Sons, New York, 2002
  14. Chen DW, Ray AK, Appl. Catal. B: Environ., 23(2-3), 143, 1999
  15. Walter MV, Ruger M, Ragob C, Steffens GCM, Hollander DA, Paar O, Maier HR, Jahnen-Dechent W, Bosserhoff AK, Erli HJ, Biomaterials., 26, 2813, 2005
  16. Erdem TK, Meral C, Tokyay M, Erdogan TY, Cem. Concr.Compos., 29, 13, 2007
  17. Daneshvar N, Behnajady MA, Asghar YZ, J. Hazard. Mater., 139(2), 275, 2007
  18. Sakthivel S, Neppolian B, Shankar MV, Arabindoo B, Palanichamy M, Murugesan V, Sol. Energy Mater. Sol. Cells., 77, 65, 2003
  19. Lizama C, Freer J, Baeza J, Mansilla WD, Catal. Today, 76(2-4), 235, 2002
  20. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69, 1995
  21. Sobana N, Swaminathan M, Sep. Purif. Technol., 56(1), 101, 2007
  22. Chatterjee S, Sarkar S, Bhattacharyya SN, J. Photochem. Photobiol. A., 77, 183, 1993
  23. Lee JC, Kim MS, Kim CK, Chung CH, Cho SM, Han GY, Yoon KJ, Kim BW, Korean J. Chem. Eng., 20(5), 862, 2003
  24. Ohno T, Tokieda K, Higashida S, Matsumura M, Appl. Catal. A: Gen., 244(2), 383, 2003
  25. Tanaka Y, Suganuma M, J. Sol-Gel Sci. Technol., 22, 83, 2001
  26. Kim DJ, Hahn SH, Oh SH, Kim EJ, Mater. Lett., 57, 355, 2002
  27. Mills A, Morris S, J. Photochem. Photobiol. A., 71, 285, 1993
  28. Machado NRCF, Santana VS, Catal. Today., 107, 595, 2005
  29. Wang CM, Heller A, Gerscher H, J. Am. Chem. Soc., 114, 5230, 1992
  30. Alberici RM, Jardim WF, Water Res., 28, 1845, 1994
  31. Sclafani A, Palmisano L, Davi E, New. J. Chem., 14, 265, 1990
  32. Matthews RW, J. Chem. Soc. Faraday Trans., 80(1), 457, 1984