Issue
Korean Journal of Chemical Engineering,
Vol.28, No.2, 348-356, 2011
Study of the structural characteristics of a divided wall column using the sloppy distillation arrangement
An efficient design method is proposed for determining the optimal design structure of a dividing wall column (DWC). The internal section of the DWC is divided into four separate sections and matched to the sloppy arrangement with three conventional simple columns. The light and heavy key component mole-fractions are used as the design variables in each column. The structure that gives superior energy efficiency in the shortcut sloppy case also brings superior energy efficiency in the DWC, while the optimal internal flow distribution of the DWC is different from that obtained from the sloppy configuration. Based upon an extensive simulation study, a two-step approach is proposed for the DWC design: the optimal DWC structure is first determined by applying the shortcut method to the sloppy configuration; the optimal internal flow distribution is then found from the corresponding DWC configuration. The simulation study shows that the DWC designed by the proposed method gives a near-optimal structure.
[References]
  1. YOO KP, LEE KS, LEE WH, PARK HS, Korean J. Chem. Eng., 5(2), 123, 1988
  2. ZAKI ML, YOON ES, Korean J. Chem. Eng., 6(3), 185, 1989
  3. Amminudin KA, Smith R, Trans. Inst. Chem. Eng., Part A, 79, 716, 2001
  4. Kim YH, Korean J. Chem. Eng., 17(5), 570, 2000
  5. Halvorsen IJ, Skogestad S, Ind. Eng. Chem. Res., 42(3), 605, 2003
  6. Halvorsen IJ, Skogestad S, Ind. Eng. Chem. Res., 43(14), 3994, 2004
  7. Kim YH, Nakaiwa M, Hwang KS, Korean J. Chem. Eng., 19(3), 383, 2002
  8. Kim YH, Chem. Eng. J., 85(2-3), 289, 2002
  9. Phipps MA, Hoadley AFA, Korean J. Chem. Eng., 20(4), 642, 2003
  10. Nikolaides IP, Malone MF, Ind. Eng. Chem. Res., 27, 811, 1988
  11. Querzoli AL, Hoadley AFA, Dyson TES, Korean J. Chem. Eng., 20(4), 635, 2003
  12. Agrawal R, Trans. Inst. Chem. Eng., PartA, 78, 454, 2000
  13. Kim YH, Choi DW, Hwang KS, Korean J. Chem. Eng., 20(4), 755, 2003
  14. Kim YH, Hwang KS, Nakaiwa M, Korean J. Chem. Eng., 21(6), 1098, 2004
  15. Segovia-Hernandez JG, Bonilla-Petriciolet A, Salcedo-Estrada LI, Korean J. Chem. Eng., 23(5), 689, 2006
  16. Lee MY, Kim YH, Korean Chem. Eng. Res., 46(5), 1017, 2008
  17. Lee MY, Jeong SY, Kim YH, Korean J. Chem. Eng., 25(6), 1245, 2008
  18. Lee MY, Choi DW, Kim YH, Korean J. Chem. Eng., 26(3), 631, 2009
  19. Hwang KS, Sung IG, Kim YH, Korean Chem. Eng. Res., 47(3), 327, 2009
  20. Triantafyllou C, Smith R, Trans. Inst. Chem. Eng., Part A, 70, 118, 1992
  21. Amminudin KA, Smith R, Thong DYC, Towler GP, Chem. Eng., 85, 289, 2002
  22. Agrawal R, Fidkowski ZT, AIChE J., 45(3), 485, 1999
  23. Premkumar R, Rangaiah GP, Chem. Eng. Res. Des., 87(1A), 47, 2009
  24. Fenske MR, Ind. Eng. Chem., 32, 1932
  25. Gilliland ER, Ind. Eng. Chem., 32, 1220, 1940
  26. Fenske MR, Ind. Eng. Chem., 24, 482, 1932
  27. Underwood AJ, Chem. Eng. Progress., 44, 603, 1948
  28. Tedder DW, Rudd DF, AIChE J., 24, 303, 1978
  29. Jimenez A, Ramirez N, Castro A, Hernandez S, Trans. Inst.Chem. Eng., 81(A5), 518, 2003
  30. Wolff EA, Skogestad S, Ind. Eng. Chem. Res., 34(6), 2094, 1995
  31. Halvorsen IJ, Skogestad S, J. Process Control, 9(5), 407, 1999
  32. Abdul Mutalib MI, Zeglam AO, Smith R, Trans. Inst. Chem.Eng., 76(A3), 308, 1998