Issue
Korean Journal of Chemical Engineering,
Vol.28, No.1, 138-142, 2011
Effect of oligomer on dye-sensitized solar cells employing polymer electrolytes
The effect of oligomer (Mn=400-500 g/mol) on dye-sensitized solar cells (DSSC) employing polymer electrolytes consisting of poly(epichlorohydrin-co-ethylene oxide) (Epichlomer), LiI, 1-methyl-3-propylimidazolium iodide (MPII) and I2 is investigated. Five kinds of oligomer, poly(ethylene glycol) (PEG, Mn=400 and 1,000 g/mol), poly(ethylene glycol) dimethyl ether (PEGDME), poly(propylene glycol) (PPG) and poly(ethylene glycol) diglycidyl ether (PEGDGE), were introduced to elucidate the role of terminal groups and chain length. The coordinative interactions and structures of polymer electrolytes were characterized by FT-IR spectroscopy and X-ray diffraction (XRD). The improved interfacial contact between the electrolytes and the electrodes by the oligomer addition was confirmed using a field-emission scanning electron microscope (FE-SEM). The electrolytes exhibited ionic conductivities on the order of 10^(-4) S/cm, but PEGDGE electrolyte showed much lower value (~10^(-8) S/cm). As a result, the energy conversion efficiency of DSSC was significantly affected by the oligomer. For example, the DSSC employing PEGDME with methyl terminal groups exhibited 3.95% at 100 mW/cm2, which is 200-fold higher than that employing PEGDGE.
[References]
  1. Yoshimoto N, Nomura H, Shirai T, Ishikawa M, Morita M, Electrochim. Acta, 50(2-3), 275, 2004
  2. Goh YT, Patel R, Im SJ, Kim JH, Min BR, Korean J. Chem. Eng., 26(2), 518, 2009
  3. Kim JH, Min BR, Won J, Kang YS, Macromolecules, 36(12), 4577, 2003
  4. Murai S, Mikoshiba S, Sumino H, Kato T, Hayase S, Chem.Commun., 13, 1534, 2003
  5. de Freitas JN, Goncalves AD, de Paoli MA, Durrant JR, Nogueira AF, Electrochim. Acta, 53(24), 7166, 2008
  6. Lee JW, Hwang KJ, Shim WG, Park KH, Gu HB, Kwun KH, Korean J. Chem. Eng., 24(5), 847, 2007
  7. Benedetti JE, Paoli MA, Nogueira AF, Chem. Commun., 9, 1121, 2008
  8. O’Regan B, Gratzel M, Nature., 353, 737, 1991
  9. Gratzel M, Inorg. Chem., 44(20), 6841, 2005
  10. Wang P, Zakeeruddin SM, Moser JE, Humphry-Baker R, Gratzel M, J. Am. Chem. Soc., 126(23), 7164, 2004
  11. Matsumoto T, Matsuda T, Suda T, Hagiwara R, Ito Y, Miyazaki Y, Chem. Lett., 1, 26, 2001
  12. Bandara J, Weerasinghe H, Sol. Energy Mater. Sol. Cells., 85, 385, 2005
  13. Kato T, Okazaki A, Hayase S, J. Photochem. Photobiol. A: Chem., 179, 42, 2006
  14. Lu S, Koeppe R, Gunes S, Sariciftci NS, Sol. Energy Mater. Sol. Cells., 91, 1081, 2007
  15. Biancardo M, West K, Krebs FC, Sol. Energy Mater. Sol. Cells., 90, 2575, 2006
  16. Nogueira VC, Longo C, Nogueira AF, Soto-Oviedo MA, De Paoli MA, J. Photochem. Photobiol. A: Chem., 181, 226, 2006
  17. Nogueira AF, Durrant JR, De Paoli MA, Adv. Mater., 13(11), 826, 2001
  18. Nakade S, Kanzaki T, Wada Y, Yanagida S, Langmuir, 21(23), 10803, 2005
  19. Kim YJ, Kim JH, Kang MS, Lee MJ, Won J, Lee JC, Kang YS, Adv. Mater., 16(19), 1753, 2004
  20. Kim JH, Kang MS, Kim YJ, Won J, Park NG, Kang YS, Chem. Commun., 14, 1662, 2004
  21. Kang MS, Kim JH, Won J, Kang YS, J. Phys. Chem. C., 111, 5222, 2007
  22. Basak P, Manorama SV, Eur. Polym. J., 40, 1155, 2004
  23. Zalewska A, Stygar J, Ciszewska E, Wiktorko M, Wieczorek W, J. Phys. Chem., 105, 5847, 2001
  24. Kang MS, Kim YJ, Won J, Kang YS, Chem. Commun., 21, 2686, 2005
  25. Sharghi H, Eskandari MM, Ghavami R, J. Mol. Catal. A., 55, 215, 2004
  26. Klinklai W, Kawahara S, Marwanta E, Mizumo T, Isono Y, Ohno H, Solid State Ion., 177(37-38), 3251, 2006
  27. Idris R, Glasse MD, Latham GRJ, Linford RG, Schlindwein WS, J. Power Sources, 94(2), 206, 2001