Issue
Korean Journal of Chemical Engineering,
Vol.28, No.1, 119-125, 2011
Bioethanol production from optimized pretreatment of cassava stem
The current ethanol production processes using crops such as corn and sugar cane are well established. However, the utilization of cheaper biomasses such as lignocellulose could make bioethanol more competitive with fossil fuels, without the ethical concerns associated with the use of potential food resources. A cassava stem, a lignocellulosic biomass, was pretreated using dilute acid to produce bioethanol. The pretreatment conditions were evaluated using response surface methodology (RSM). As a result, the optimal conditions were 177 ℃, 10 min and 0.14 M for the temperature, reaction time and acid concentration, respectively. The enzymatic digestibility of the pretreated cassava stem was examined at various enzyme loadings (10-40 FPU/g cellulose of cellulase and 30 CbU/g of β-glucosidase). With respect to economic feasibility, 20 FPU/g cellulose of cellulase and 30 CbU/g of β-glucosidase were selected for the test concentration and led to a saccharification yield of 70%. The fermentation of the hydrolyzed cassava stem using Saccharomyces cerevisiae resulted in an ethanol concentration of 7.55 g/L and a theoretical fermentation yield of 89.6%. This study made a significant contribution to the production of bioethanol from a cassava stem. Although the maximum ethanol concentration was low, an economically efficient overall process was carried out to convert a lignocellulosic biomass to bioethanol.
[References]
  1. Zaldivar J, Nielsen J, Olsson L, Appl. Microbiol. Biotechnol., 56(1-2), 17, 2001
  2. Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G, Trends Biotechnol., 24, 549, 2006
  3. Lynd LR, Annu. Rev. Energ. Environ., 21, 403, 1996
  4. Rass-Hansen J, Falsig H, Jorgensen B, Christensen CH, J. Chem. Technol. Biotechnol., 82(4), 329, 2007
  5. Chang V, Holtzapple M, Appl. Biochem. Biotechnol., 84, 5, 2000
  6. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M, Bioresour. Technol., 96(6), 673, 2005
  7. Schell DJ, Farmer J, Newman M, McMillan JD, Appl. Biochem. Biotechnol., 105, 69, 2003
  8. Torget R, Walter P, Himmel M, Grohmann K, Appl. Biochem.Biotechnol., 28, 75, 1991
  9. Hsu TA, Pretreatment of biomass. In: Wyman, C. E. (Ed.), Handbook on Bioethanol: Production and Utilization, Taylor & Francis, Washington, DC, USA, 1996
  10. Gould JM, Biotechnol. Bioeng., 27, 225, 1985
  11. Martel P, Gould JM, J. Appl. Polym. Sci., 39, 707, 1990
  12. Yang B, Boussaid A, Mansfield SD, Gregg DJ, Saddler JN, Biotechnol. Bioeng., 77(6), 678, 2002
  13. Kim SB, Um BH, Park SC, Appl. Biochem. Biotechnol., 91, 81, 2001
  14. Neely WC, Biotechnol. Bioeng., 26, 59, 1984
  15. Sun Y, Cheng JY, Bioresour. Technol., 83(1), 1, 2002
  16. Kunamneni A, Singh S, Biochem. Eng. J., 27, 179, 2005
  17. Tengborg C, Galbe M, Zacchi G, Biotechnol. Prog., 17(1), 110, 2001
  18. Marques J, Vila-Real HJ, Alfaia AJ, Ribeiro MHL, Food Chem., 105, 504, 2007
  19. Ribeiro IAC, Ribeiro MHL, J. Mol. Catal. B Enzym., 51, 10, 2008
  20. Gouveia IC, Fiadeiro JM, Queiroz JA, Biochem. Eng. J., 4, 157, 2008
  21. Lu XB, Zhang YM, Yang J, Liang Y, Chem. Eng. Technol., 30(7), 938, 2007
  22. Lebo SE, Gargulak JD, McNally TJ “Lignin” in Kirk-Othmer Encyclopedia of Chemical Technology, Ed. Kroschwitz JI and Howe-Grant M, John Wiley & Sons, New York, 2001
  23. Yang B, Wyman CE, Biotechnol. Bioeng., 86(1), 88, 2004
  24. Montgomery DC, Design and Analysis of Experiments, fifth Ed., John Wiley & Sons, Inc, 2001
  25. National Renewable Energy Laboratory, Standard Biomass Analytical Procedures. http://www.nrel.gov/biomass/analytical_procedures.html.
  26. Haaland PD, Experimental design in biotechnology, Marcel Dekker, Inc., New York, 1989
  27. Susana F, Ana PD, Maria HLR, Joao AQ, Fernanda CD, Biochem. Eng. J., 45, 192, 2009