Issue
Korean Journal of Chemical Engineering,
Vol.28, No.2, 597-601, 2011
Expanded ensemble Monte Carlo simulations for the chemical potentials of supercritical carbon dioxide and hydrocarbon solutes
We carry out expanded ensemble Monte Carlo simulations in order to calculate the chemical potentials of carbon dioxide as solvent and those of hydrocarbons as solutes at supercritical conditions. Recently developed adaptive method is employed to find weight factors during the simulation, which is crucial to achieving high accuracy for free energy calculation. The present simulation method enables us to obtain chemical potentials of large solute molecules dissolved in compressed phase from a single run of simulation. Simulation results for the excess chemical potentials of pure carbon dioxide at 300, 325 and 350 K are compared with experimental data and values predicted by the Peng-Robinson equation of state. A good agreement is found for high pressures up to 500 bar. The chemical potentials of hydrocarbon solutes dissolved in carbon dioxide at infinite dilution are predicted by simulation. Less than eight intermediate subensembles are required to gradually insert (or delete) hydrocarbon solute molecules from methane to noctane into dense CO2 phase of approximately 1.0 g cm^(-3).
[References]
  1. Frenkel D, Smit B, Understanding Molecular Simulations 2nd Ed., Academic, San Diego, 2002
  2. Widom B, J. Chem. Phys., 39, 2808, 1963
  3. Zwanzig RW, J. Chem. Phys., 22, 1420, 1954
  4. Kirkwood JG, J. Chem. Phys., 3, 300, 1935
  5. Bennett CH, J. Comput. Phys., 22, 245, 1976
  6. Lyubartsev AP, Martsinovski AA, Shevkunov SV, Vorontsov-Vel’yaminov PN, J. Chem. Phys., 96, 1776, 1992
  7. Lyubartsev AP, Laaksonen A, Vorontsov-Velyaminov PN, Mol. Phys., 82, 455, 1994
  8. Lyubartsev AP, Laaksonen A, Vorontsov-Velyaminov PN, Mol. Simul., 18, 455, 1996
  9. Lyubartsev AP, Jacobsson SP, Sundholm G, Laaksonen A, J. Phys. Chem. B, 105(32), 7775, 2001
  10. Errington JR, Boulougouris GC, Economou IG, Panagiotopoulos AZ, Theodorou DN, J. Phys. Chem. B, 102(44), 8865, 1998
  11. Boulougouris GC, Errington JR, Economou IG, Panagiotopoulos AZ, Theodorou DN, J. Phys. Chem. B, 104(20), 4958, 2000
  12. Khare AA, Rutledge GC, J. Chem. Phys., 110(6), 3063, 1999
  13. Khare AA, Rutledge GC, J. Phys. Chem. B, 104(15), 3639, 2000
  14. Aberg KM, Lyubartsev AP, Jacobsson SP, Laaksonen A, J. Chem. Phys., 120(8), 3770, 2004
  15. Chang J, Sandler SI, J. Chem. Phys., 118(18), 8390, 2003
  16. Chang J, Lenhoff AM, Sandler SI, J. Chem. Phys., 120(6), 3003, 2004
  17. Chang J, Lenhoff AM, Sandler SI, J. Phys. Chem. B, 109(41), 19507, 2005
  18. Chang J, Sandler SI, J. Chem. Phys., 125, 054705, 2006
  19. Chang J, J. Chem. Phys., 131, 074103, 2009
  20. Harris JG, Yung KH, J. Phys. Chem., 99(31), 12021, 1995
  21. Vorholz J, Harismiadis VI, Rumpf B, Panagiotopoulos AZ, Maurer G, Fluid Phase Equilib., 170(2), 203, 2000
  22. Martin MG, Siepmann JI, J. Phys. Chem. B, 102(14), 2569, 1998
  23. Wick CD, Martin MG, Siepmann JI, J. Phys. Chem. B, 104(33), 8008, 2000
  24. Chen B, Potoff JJ, Siepmann JI, J. Phys. Chem. B, 105(15), 3093, 2001
  25. Lemmon EW, McLinden MO, Friend DG, “Thermophysical Properties of Fluid Systems” in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. Linstrom PJ and Mallard WG, National Institute of Standards and Technology, Gaithersburg MD, 20899, http://webbook.nist.gov (retrieved April 10, 2010).
  26. Peng DY, Robinson DB, Ind. Eng. Chem. Fundam., 15, 59, 1976
  27. Sandler SI, Chemical, Biochemical and Engineering Thermodynamics 4th Ed., John Wiley & Sons, 2006