Issue
Korean Journal of Chemical Engineering,
Vol.28, No.2, 402-408, 2011
Effects of La2O3 on ZrO2 supported Ni catalysts for autothermal reforming of CH4
The effect of La2O3 content in Ni-La-Zr catalyst was investigated for the autothermal reforming (ATR) of CH4. The catalysts were prepared by the coprecipitation method and had a mesoporous structure. Temperature programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS) indicated that a strong interaction developed between Ni species and the support with the addition of La2O3. Thermogravimetric analysis (TGA) and H2-pulse chemisorption showed that the addition of La2O3 led to well dispersed NiO molecules on the support. Ni-La-Zr catalysts gave much higher CH4 conversion than Ni-Zr catalyst. The Ni-La-Zr containing 3.2 wt% La2O3 showed the highest activity. The optimum conditions for maximal CH4 conversion and H2 yield were H2O/CH4=1.00, O2/CH4=0.75. Under these conditions, CH4 conversion of 83% was achieved at 700 ℃. In excess O2 (O2/CH4>0.88), the catalytic activity was decreased due to sintering of the catalyst.
[References]
  1. Cai X, Dong X, Lin W, J. Nat. Gas Chem., 15, 122, 2006
  2. Choi SO, Ahn IY, Moon SH, Korean J. Chem. Eng., 26(5), 1252, 2009
  3. Escritori JC, Dantas SC, Soares RR, Hori CE, Catal. Commun., 10, 1090, 2009
  4. Jun JH, Jeong KS, Lee TJ, Kong SJ, Lim TH, Nam SW, Hong SA, Yoon KJ, Korean J. Chem. Eng., 21(1), 140, 2004
  5. Koo K, Yoon J, Lee C, Joo H, Korean J. Chem. Eng., 25(5), 1054, 2008
  6. Park S, Chun K, Yoon W, Kim S, Res. Chem. Intermed., 34, 781, 2008
  7. Roh HS, Jun KW, Catal. Surv. Asia., 12, 239, 2008
  8. Wang HM, J. Power Sources, 177(2), 506, 2008
  9. Mukainakano Y, Li BT, Kado S, Miyazawa T, Okumura K, Miyao T, Naito S, Kunimori K, Tomishige K, Appl. Catal. A: Gen., 318, 252, 2007
  10. Dong WS, Jun KW, Roh HS, Liu ZW, Park SE, Catal. Lett., 78(1-4), 215, 2002
  11. Martinez R, Romero E, Guimon C, Bilbao R, Appl. Catal. A: Gen., 274(1-2), 139, 2004
  12. Roh HS, Jun KW, Dong WS, Chang JS, Park SE, Joe YI, J. Mol. Catal. A: Chem., 18, 137, 2002
  13. Koo KY, Roh HS, Seo YT, Seo DJ, Yoon WL, Park SB, Int. J. Hydrogen Energy., 33, 2036, 2008
  14. Koo KY, Roh HS, Seo YT, Seo DJ, Yoon WL, Bin Park S, Appl. Catal. A: Gen., 340(2), 183, 2008
  15. Rezaei M, Alavi SM, Sahebdelfar S, Bai P, Liu XM, Yan ZF, Appl. Catal. B: Environ., 77(3-4), 346, 2008
  16. Ma T, Huang Y, Yang J, He J, Zhao L, Mater. Des., 25, 515, 2004
  17. Park KT, Jung UH, Choi DW, Chun K, Lee HM, Kim SH, J. Power Sources, 177(2), 247, 2008
  18. Wei JM, Xu BQ, Li JL, Cheng ZX, Zhu QM, J. Mol.Catal. A: Chem., 196, 167, 2000
  19. Rouquerol J, Pure Appl. Chem., 66, 1739, 1994
  20. Sing KSW, Pure Appl. Chem., 57, 603, 1985
  21. Brunauer S, Emmett PH, Teller E, J. Am. Chem. Soc., 60, 309, 1938
  22. Slagtern A, Schuurman Y, Leclercq C, Verykios X, J. Catal., 172(1), 118, 1997
  23. Gadalla AM, Bower B, Chem. Eng. Sci., 43, 3049, 1988
  24. Tsang SC, Claridge JB, Green ML, Catal. Today, 23(1), 3, 1995
  25. Sainchez-Sainchez MC, Int. J. Hydrogen Energy., 32, 1462, 2007
  26. Hickman DA, Science., 259, 343, 1993
  27. Trimm DL, Catal. Today, 49(1-3), 3, 1999