Issue
Korean Journal of Chemical Engineering,
Vol.28, No.1, 267-271, 2011
Bacterial uptake of silver nanoparticles in the presence of humic acid and AgNO3
Silver nanoparticles (AgNPs), potent antibiotic materials, have been found to cause cell-membrane damage and produce reactive oxygen species (ROS). The resultant structural change in the cell-membrane could cause an increase in cell permeability of silver ions and AgNPs. To address this issue further, in-vivo and in-vitro cytotoxicity testing of as-made nanomaterials was conducted to quantify and assess their nanotoxicity. Considering the behavior of AgNPs in the environment, toxicity may be reflected by differences in their physicochemical properties (size, agglomeration rate, adsorption properties on humic acid) dependency and toxicity depression. Therefore, we investigated the effect of the cellular uptake of AgNPs with the kinetics of agglomeration and adsorption. The amount of agglomerated and adsorbed AgNPs with sizes of <14 nm was higher than that for AgNPs with sizes of 90 and 140 nm. For 90 and 140 nm sized AgNPs, adsorption was more significant than agglomeration. It is noteworthy that the normal concept that smaller sized AgNPs are taken up more readily may be in error in cases of interactions of abiotic factors.
[References]
  1. Meng H, Xia T, George S, Nel AE, ACS NANO., 3, 1620, 2009
  2. Pal S, Tak YK, Myong SJ, Appl. Environ. Micorbio., 73, 1712, 2007
  3. Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Sigg L, Behra R, Environ. Sci. Technol., 42, 8959, 2008
  4. Danilczuk M, Lund A, Sadlo J, Yamada H, Michalik J, Sectrochim. Acta A., 63, 189, 2006
  5. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Nanomed., 3, 95, 2007
  6. Hwang ET, Lee JH, Chae YJ, Kim YS, Kim BC, Sang BI, Gu MB, Small., 4, 746, 2008
  7. Sondi I, Salopek-Sondi B, J. Colloid Interface Sci., 275(1), 177, 2004
  8. Morens JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Nanotehchnology., 16, 2346, 2005
  9. Nowack B, Bucheli TD, Environ. Poll., 150, 5, 2007
  10. Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RH, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR, Environ. Toxicol. Chem., 27, 1825, 2008
  11. Limbach LK, Li Y, Grass RN, Brunner TJ, Hintermann MA, Muller M, Gunther M, Stark WJ, Environ. Sci. Technol., 39, 9370, 2005
  12. Lee SM, Song KC, Lee BS, Korean J. Chem. Eng., 27(2), 688, 2010
  13. Liu JF, Zhao ZS, Jiang GB, Environ. Sci. Technol., 42, 6949, 2008
  14. Fabrega J, Fawcett SR, Renshaw JC, Lead JR, Environ.Sci. Technol., 43, 7285, 2009
  15. Jiang J, Oberdoster G, Biswas P, J. Nanopart. Res., 11, 77, 2009
  16. Bihari P, Vippola M, Schultes S, Praetner M, Khandoga AG, Reichel CA, Coester C, Tuomi T, Rehberg M, Krombach F, Part. Fibre. Toxcol., 5, 14, 2008
  17. Porter D, Sriram K, Wolfarth M, Jefferson A, Schwegler-Berry D, Andrew M, Castranova V, Nanotoxicol., 2, 144, 2008
  18. Ho YS, Wase DAJ, Forster CF, Environ. Technol., 17, 71, 1996
  19. Muller NC, Nowack B, Environ. Sci. Technol., 42, 4447, 2008