Issue
Korean Journal of Chemical Engineering,
Vol.10, No.4, 226-234, 1993
DISSIPATIVE STRUCTURES OF AUTOCATALYTIC REACTIONS IN TUBULAR FLOW REACTORS
Dissipative structures of autocatalytic reactions with initially uniform concentrations are studied in tubular flow reactors. A unique steady state exists in a continuous stirred tank reactor. Linear stability analysis predicts either a stable node, a focus or an unstable saddle-focus. Sustained oscillations around the unstable focus can occur for high values of Damkohler number. In distributed parameter systems, travelling, waves with pseudo-constant patterns are observed. With intermediate values of Damkohler number, single or multiple standing waves are obtained. The temporal behavior indicates also the appearance of retriggering or echo waves. For high values of Damkohler number, both single peak and complex multipeak oscillations are found. In the cell model, both regular oscillations near the inlet and chaotic behavior downstream are observed. In the dispersion model, higher Peclet numbers eliminate the oscillations. The spatial profile shows a train of pulsating waves for the discrete model and a single pulsating or solitary wave for the continuous model.
[References]
  1. Lotka AJ, Elements of Mathematical Biology, Dover, 1956
  2. Nicolis G, Prigogine I, Self-Organization in Non-equilibrium System, John Wiley, New York, 1977
  3. Erneux T, Herschkowitz-Kaufman M, Bull. Math. Biol., 41, 21, 1979
  4. Herschkowitz-Kaufman M, Bull. Math. Biol., 37, 589, 1975
  5. Prigogine I, Lefever R, J. Chem. Phys., 48, 1695, 1968
  6. Vavilin VA, Zhabotinskii AM, Kinet. Catal., 10, 538, 1969
  7. Zhabotinskii AM, Zaikin AN, Kinet. Catal., 12, 516, 1971
  8. Frank-Kamanetskii DA, Diffusion and Heat Transfer in Chemical Kinetics, Plenum Press, New York, 1969
  9. Yamazaki I, Nakamura S, Yokota K, Nature, 222, 794, 1969
  10. Tatterson DF, Hudson JL, Chem. Eng. Commun., 1, 3, 1973
  11. Zhabotinskii AM, Zaikin AN, J. Theor. Biol., 40, 45, 1973
  12. Marek M, Biophys. Chem., 3, 263, 1975
  13. Graziani KR, Hudson JL, Schmitz RA, Chem. Eng. J., 12, 9, 1976
  14. Schmitz RA, Graziani KR, Hudson JL, Chem. Phys., 67, 3040, 1977
  15. Rossler OE, Nature, 271, 89, 1978
  16. Simoyi RH, Roux JC, Swinney HL, Physica, 8D, 257, 1983
  17. Roux JC, Physica, 7D, 57, 1983
  18. Hlavacek V, Sinkule J, Kubicek M, J. Theor. Biol., 36, 283, 1972
  19. Sinkule J, Hlavacek V, Vortruba J, Tvrdik I, Chem. Eng. Sci., 29, 689, 1974
  20. Puszynski J, Snita D, Hlavacek V, Hofmann H, Chem. Eng. Sci., 36, 1605, 1981
  21. Gray P, Scott SK, Chem. Eng. Sci., 38, 29, 1983
  22. Pisman LM, Chem. Eng. Sci., 38, 1950, 1980
  23. Neu JC, SIAM J. Appl. Math., 36, 509, 1979
  24. Krinsky VI, Sci. Publ., 20, 59, 1968
  25. Tomita K, Kai T, Prog. Theor. Phys., 61, 54, 1979
  26. Fujisaka H, Phys. Lett., A66, 450, 1978
  27. Marek M, Schreiber I, Physica, 5D, 258, 1982
  28. Kim SH, Hlavacek V, Physica, 10D, 413, 1984
  29. Wen CY, Fan LT, Models for Flow Systems and Chemical Reactors, Marcel Dekker, Inc., New York, 1975