Issue
Korean Journal of Chemical Engineering,
Vol.28, No.1, 189-194, 2011
Changes in physicochemical properties and gaseous emissions of composting swine manure amended with alum and zeolite
Ammonia emissions from composted swine manure and the resulting physicochemical changes were monitored to determine the effectiveness of adding alum and zeolite during the composting process, as well as the most effective addition method. The two amendments reduced ammonia emissions 85-92%, with the finished compost retaining three-fold more NH4^(+)-N than the unamended control. The addition of zeolite sequestered 44% of the retained NH4^(+)-N at zeolite exchange sites. The addition of amendments did not appear to significantly affect microbial activity, because the patterns of CO2 emissions, total organic carbon (TOC) reduction, and the ratio of humic acid to TOC of amended and unamended composts were very similar. The final respiration rates and Solvita® maturity index indicated that the finished compost was well matured and aged. Alum has a high potential to reduce ammonia emissions and concomitantly enhance fertilizer N value. Zeolite further reduces ammonia emissions, and improves fertilizer quality, by serving as a slow-release N source.
[References]
  1. Tiquia SM, Tam NFY, Bioresour. Technol., 72(1), 1, 2000
  2. Baek K, Shin HJ, Lee HH, Jun YS, Yang JW, Korean J. Chem. Eng., 19(4), 627, 2002
  3. Kuroda K, Hanajima D, Fukumoto Y, Suzuki K, Kawamoto S, Shima J, Haga K, Biosci. Biotechnol. Biochem., 68, 286, 2004
  4. DeLaune PB, Moore PA, Daniel TC, Lemunyon JL, J.Environ. Qual., 33, 728, 2004
  5. Kithome M, Paul JW, Bomke AA, J. Environ. Qual., 28, 194, 1999
  6. Hong JH, Park KJ, Bioresour. Technol., 96(6), 741, 2005
  7. Patterson PH, Adrizal, J. Appl. Poult. Res., 14, 638, 2005
  8. Smith DR, Moore Jr PA, Haggard BE, Maxwell CV, Daniel TC, Van Devander K, Davis ME, Anim. Sci., 82, 605, 2004
  9. Li H, Xin H, Liang Y, Burns RT, J. Appl. Poult. Res., 17, 421, 2008
  10. Gomez RB, Lima FV, Ferrer AS, Waste Manage. Res., 24, 37, 2006
  11. Kalamdhad AS, Pasha M, Kazmi AA, Res. Conserv. Recycl., 52, 829, 2008
  12. Tremier A, de Guardia A, Massiani C, Paul E, Martel JL, Bioresour. Technol., 96(2), 169, 2005
  13. Chroni C, Kyriacou A, Manios T, Lasaridi KE, Biores. Technol., 100, 3745, 2009
  14. Komilis DP, Waste Manage., 26, 82, 2006
  15. Sundberg C, Smars S, Jonsson H, Biores. Technol., 98, 145, 2004
  16. Choi IH, Moore PA, J. Appl. Poult. Res., 17, 454, 2008
  17. Huang GF, Wong JWC, Wu QT, Nagar BB, Waste Manage., 24, 805, 2004
  18. Lefcourt AM, Meisinger JJ, J. Dairy Sci., 84, 1814, 2001
  19. Kithome MJW, Paul JW, Lavkulich LM, Bomke AA, Soil Sci. Soc. Am. J., 62, 622, 1998
  20. Mulvaney RL, in Methods of Soil Analysis, J. M. Bartels Ed., Soil Science Society of America, Inc., Madison, 1996
  21. Baquerizo G, Maestre JP, Sakuma T, Deshusses MA, Gamisans X, Gabriel D, Lafuente J, Chem. Eng. J., 113(2-3), 205, 2005
  22. Park S, Bae W, Process Biochem., 44, 631, 2009
  23. Dwairi IM, Environ. Geol., 34, 1, 1998
  24. Bonelli B, Onida B, Fubini B, Arean CO, Garrone E, Langmuir, 16(11), 4976, 2000
  25. Brinton WF, Biocycle., 42, 74, 2001
  26. Cabanas-Vargas DD, Sanchez-Monedero MA, Urpilainen ST, Kamilaki A, Stentiforg EI, Ingenieria., 9, 25, 2005
  27. Leita L, De Nobili M, J. Environ. Qual., 20, 73, 1991
  28. Inbar Y, Hadar Y, Chen Y, J. Environ. Qual., 22, 857, 1993
  29. Pietro M, Paola C, Thermochim. Acta, 413(1-2), 209, 2004