Issue
Korean Journal of Chemical Engineering,
Vol.8, No.1, 6-11, 1991
VOID CHARACTERISTICS IN TURBULENT FLUIDIZED BEDS
Void properties (size, rising velocity)in the turbulent flow regime have been deter-mined in a 0.1m-ID X 3.0m high Plexiglas column of glass beads(dp=0.362mm) by using an optical fiber probe system. The bubble size increases with an increase in gas velocity in the slugging flow regime but it sharply decreases in the turbulent flow regime. The mean amplitude of pressure fluctuations is linearly related to the bubble or void size in the bed. The mean amplitude of pressure fluctuations is linearly related to the bubble or void size in the bed. The void rising velocity is almost constant in the turbulent flow regime. Uniform condition of the bed structure in the turbulent flow regime can be determined from the void distribution coefficient in the bed. In addition, the bed condition in the turbulent flow regime has been evaluated from the variations of the void velocity coefficient and the propulsive power of a rising void with gas velocity.
[References]
  1. Thiel WJ, Potter OE, Ind. Eng. Chem. Fundam., 16, 242, 1971
  2. Kehoe PWK, Davidson JF, Chemeca'70, Inst. Chem. Eng. Symp. Ser., No. 33, p. 97, Butterworths, Melbourne, 1971
  3. Abed R, Fluidization, D. Kunii and R. Toei (eds.), p. 137, Engineering Foudation, New York, 1984
  4. Lancia A, Niro R, Volpicelli G, Santoro L, Powder Technol., 56, 49, 1988
  5. Lanneau KP, Trans. Inst. Chem. Eng., 38, 125, 1960
  6. Massimilla L, AIChE Symp. Ser., 69(128), 11, 1973
  7. Canada GS, McLaughlin MH, Staub FW, AIChE Symp. Ser., 74(176), 14, 1978
  8. Satija S, Fan LS, AIChE J., 31, 1554, 1985
  9. Sun G, Chen G, Fluidization VI, Grace, J.R., Shemilt, L.W. and Bergougnou, M.A. (eds.), p. 33, Engineering Foundation, New York, 1989
  10. Yerushalmi J, Cankurt NT, Powder Technol., 24, 187, 1979
  11. Lee GS, Kim SD, J. Chem. Eng. Jpn., 21, 515, 1988
  12. Lee GS, Kim SD, Korean J. Chem. Eng., 6(4), 338, 1989
  13. Lee GS, Kim SD, Korean J. Chem. Eng., 6(1), 15, 1989
  14. Rowe PN, Masson H, Trans. Inst. Chem. Eng., 59, 177, 1981
  15. Lee GS, Kim SD, Chem. Eng. Commun., 86, 91, 1989
  16. Lee GS, Kim SD, Chem. Eng. J., 44, 1, 1990
  17. Fan LT, Ho TC, Walawender WP, AIChE J., 29, 33, 1983
  18. Davidson JF, Harrison D, Fluidized Pariticles, Cambridge Univ. Press, London, 1963
  19. Nicklin DJ, Chem. Eng. Sci., 17, 693, 1962
  20. Ishii M, Zuber N, AIChE J., 25, 843, 1979
  21. Weimer AW, Clough DE, AIChE J., 29, 411, 1983
  22. Zuber N, Findlay JA, J. Heat Transfer, 87, 453, 1965
  23. Clift R, Grace JR, Fluidization, 2nd ed., J.F. Davidson, R. Clift and D. Harrison (eds.), Chap. 3, Academic Press, London, 1985
  24. Schweinzer J, Molerus O, Particulate Sci. Technol., 6, 285, 1988
  25. Grace JR, Harrison D, Chem. Eng. Sci., 24, 497, 1969