Issue
Korean Journal of Chemical Engineering,
Vol.27, No.4, 1042-1048, 2010
Cellular engineering for the high-level production of recombinant proteins in mammalian cell systems
The market for protein-drugs has steadily increased due their increased use as alternatives to traditional small molecule drugs. While some therapeutic proteins have been produced in microbial systems, mammalian cell systems such as Chinese hamster ovary (CHO) cells are widely used as the host cell system. To increase the efficiency of producing therapeutic proteins, many researchers have attempted to solve the critical problems that occur in mammalian cell systems. As a result, several serum-free media and advanced culture methods have been developed, and protein productivity has increased considerably through the development of efficient selection methods. However, the prevalence of apoptosis during mammalian cell culture still remains a significant problem. Based on the understanding of apoptotic mechanisms and related proteins, anti-apoptotic engineering has steadily progressed. In this study, we review the strategies that have been developed for high-level production of recombinant proteins in the CHO cell system via a selection of clones, target-gene amplification, optimization of culture systems and an inhibition of apoptosis through genetic modification.
[References]
  1. Walsh G, Nat. Biotechnol., 21, 865, 2003
  2. Wurm FM, Nat. Biotechnol., 22, 1393, 2004
  3. Robinson DK, Memmert KW, Biotechnol. Bioeng., 38, 972, 1991
  4. Kwaks THJ, Otte AP, Trends Biotechnol., 24, 137, 2006
  5. Wilson TJ, Kola I, Methods Mol. Biol., 158, 83, 2001
  6. Urlaub G, Chasin LA, Proc. Natl. Acad. Sci. USA., 77, 4216, 1980
  7. Urlaub G, Kas E, Carothers AM, Chasin LA, Cell., 33, 405, 1983
  8. Pallavicini MG, DeTeresa PS, Rosette C, Gray JW, Wurm FM, Mol. Cell. Biol., 10, 401, 1990
  9. Gandor C, Leist C, Fiechter A, Asselbergs FAM, Febs Lett., 377, 290, 1995
  10. Wirth M, Bode J, Zettlmeissl G, Hauser H, Gene., 73, 419, 1988
  11. Browne SM, Al-Rubeai M, Trends Biotechnol., 25, 425, 2007
  12. Sinacore MS, Drapeau D, Adamson SR, Mol. Biotechnol., 15, 249, 2000
  13. De Jesus MJ, Girard P, Bourgeois M, Baumgartner G, Jacko B, Amstutz H, Wurm FM, Biochem. Eng. J., 17, 217, 2004
  14. Walker NI, Harmon BV, Gobe GC, Kerr JF, Methods Achiev. Exp. Pathol., 13, 18, 1988
  15. Wyllie AH, Morris RG, Smith AL, Dunlop D, J. Pathol., 142, 66, 1984
  16. Susin SA, Zamzami N, Kroemer G, Biochim. Biophys. Acta., 1366, 151, 1998
  17. Liu X, Kim CN, Yang J, Jemmerson R, Wang X, Cell., 86, 147, 1996
  18. Ashkenazi A, Nat. Rev. Cancer., 2, 420, 2002
  19. Oyadomari S, Araki E, Mori M, Apoptosis., 7, 335, 2002
  20. Adam JM, Cory S, Curr. Opin. Cell Biol., 14, 715, 2002
  21. Subramanian T, Chinnadurai G, J. Cell. Biochem., 89, 1102, 2003
  22. Cheng EH, Levine B, Boise LH, Thompson CB, Hardwick JM, Nature, 379(6565), 554, 1996
  23. Mastrangelo AJ, Betenbaugh MJ, Trends Biotechnol., 16, 88, 1998
  24. Arden N, Betenbaugh MJ, Trends Biotechnol., 22, 174, 2004
  25. Sanfeliu A, Stephanopoulos G, Biotechnol. Bioeng., 64(1), 46, 1999
  26. Zanghi JA, Renner WA, Bailey JE, Fussenegger M, Biotechnol. Prog., 16(3), 319, 2000
  27. Balcarcel RR, Stephanopoulos G, Biotechnol. Bioeng., 76(1), 1, 2001
  28. Tinto A, Gabernet C, Vives J, Prats E, Cairo JJ, Cornudella L, Godia F, J. Biotechnol., 95, 205, 2002
  29. Sauerwald TM, Oyler GA, Betenbaugh MJ, Biotechnol. Bioeng., 81(3), 329, 2003
  30. McKenna SL, Cotter TG, Biotechnol. Bioeng., 67(2), 165, 2000
  31. Vives J, Juanola S, Cairo JJ, Godia F, Metab. Eng., 5, 124, 2003
  32. Vives J, Juanola S, Cairo JJ, Prats E, Cornudella L, Godia F, Biotechnol. Prog., 19(1), 84, 2003
  33. Mastrangelo AJ, Hardwick JM, Bex F, Betenbaugh MJ, Biotechnol. Bioeng., 67(5), 544, 2000
  34. Sung YH, Lee GM, Biotechnol. Prog., 21(1), 50, 2005
  35. Figueroa B, Sauerwald TM, Oyler GA, Hardwick JM, Betenbaugh MJ, Metab. Eng., 5, 230, 2003
  36. Lasunskaia EB, Fridlianskaia II, Darieva ZA, da Silva MSR, Kanashiro MM, Margulis BA, Biotechnol. Bioeng., 81(4), 496, 2003
  37. Hwang SO, Lee GM, J. Biotechnol., 139, 89, 2009
  38. Kim NS, Lee GM, Biotechnol. Bioeng., 78(2), 217, 2002
  39. Sung YH, Lee JS, Park SH, Koo J, Lee GM, Metab. Eng., 9, 452, 2007
  40. Rhee WJ, Kim EJ, Park TH, Biotechnol. Prog., 15(6), 1028, 1999
  41. Rhee WJ, Park TH, Biochem. Biophys. Res. Commun., 271(1), 186, 2000
  42. Rhee WJ, Kim EJ, Park TH, Biochem. Biophys. Res. Commun., 295(4), 779, 2002
  43. Choi SS, Rhee WJ, Park TH, Biotechnol. Prog., 18(4), 874, 2002
  44. Kim EJ, Rhee WJ, Park TH, Biochem. Biophys. Res. Commun., 285(2), 224, 2001
  45. Kim EJ, Park HJ, Park TH, Biochem. Biophys. Res. Commun., 308(3), 523, 2003
  46. Park HJ, Kim EJ, Koo TY, Park TH, Enzyme Microb. Technol., 33(4), 466, 2003
  47. Kim EJ, Rhee WJ, Park TH, Biotechnol. Prog., 20(1), 324, 2004
  48. Rhee WJ, Lee EH, Park TH, Biotechnol. Bioprocess Eng., 14, 645, 2009
  49. Kim EJ, Park TH, Biotechnol. Bioprocess Eng., 8, 76, 2003
  50. Rhee WJ, Lee EH, Park JH, Lee JE, Park TH, Biotechnol. Prog., 23(6), 1441, 2007
  51. Choi SS, Rhee WJ, Park TH, Biotechnol. Bioeng., 91(7), 793, 2005
  52. Choi SS, Rhee WJ, Kim EJ, Park TH, Biotechnol. Bioeng., 95(3), 459, 2006
  53. Park JG, Choi SS, Park TH, Process Biochem., 42, 8, 2007
  54. Koo TY, Park JH, Park HH, Park TH, Process Biochem., 44, 146, 2009
  55. Wang Z, Park JH, Park HH, Tan W, Park TH, Process Biochem., in press, doi:10.1016/j.procbio.2010.03.029, 2010