Issue
Korean Journal of Chemical Engineering,
Vol.27, No.4, 1076-1086, 2010
Inertial migration and multiple equilibrium positions of a neutrally buoyant spherical particle in Poiseuille flow
The radial migration of a single neutrally buoyant particle in Poiseuille flow is numerically investigated by direct numerical simulations. The simulation results show that the Segre and Silberberg equilibrium position moves towards the wall as the Reynolds number increases and as the particle size decreases. At high Reynolds numbers, inner equilibrium positions are found at positions closer to the centerline and move towards the centerline as the Reynolds number increases. At higher Reynolds numbers, the Segre and Silberberg equilibrium position disappears and only the inner equilibrium position exists. We prove that the inner annuluses in the measurements of Matas, Morris & Guazzelli (J. Fluid Mech. 515, 171-195, 2004) are not transient radial positions, but are real equilibrium positions. The results on the inner equilibrium positions and unstable equilibrium positions are new and convince us of the existence of multiple equilibrium radial positions for neutrally buoyant particles.
[References]
  1. Segre G, Silberberg A, J. Fluid Mech., 14, 136, 1962
  2. Ho BP, Leal LG, J. Fluid Mech., 65, 365, 1974
  3. Bretherton FP, J. Fluid Mech., 14, 284, 1962
  4. Segre G, Silberberg A, Nature., 189, 209, 1961
  5. Oliver R, Nature., 194, 1269, 1962
  6. Goldsmith HL, Mason SG, J. Colloid Sci., 17, 448, 1962
  7. Eichhorn R, Small S, J. Fluid Mech., 20, 513, 1964
  8. Repetti RV, Leonard EF, Nature., 203, 1346, 1964
  9. Jeffrey RC, Pearson JRA, J. Fluid Mech., 22, 721, 1965
  10. Brenner H, Adv. Chem. Eng., 6, 287438, 1966
  11. Karnis A, Goldsmith HL , Mason SG, Can. J. Chem. Eng., 44, 181, 1966
  12. Goldsmith HL, Mason SG, The microrheology of dispersions, in Rheology, Theory and Applications 4, Academic Press, New York, 1967
  13. Halow JS, Wills GB, AIChE J., 16, 281, 1970
  14. Tachibana M, Rheol. Acta., 12, 58, 1973
  15. Aoki H, Kurosaki Y, Anzai H, Bull. JSME., 22, 206, 1979
  16. Han M, Kim C, Kim M, Lee S, J. Rheol., 43(5), 1157, 1999
  17. Rubinow SI, Keller JB, J. Fluid Mech., 11, 447, 1961
  18. Saffman PG, J. Fluid Mech., 22, 385, 1965
  19. Schonberg JA, Hinch EJ, J. Fluid Mech., 203, 517, 1989
  20. Asmolov ES, J. Fluid Mech., 381, 63, 1999
  21. Hu HH, Joseph DD, Crochet MJ, Theor. Comput. Fluid Dyn., 3, 285, 1992
  22. Feng J, Hu HH, Joseph DD, J. Fluid Mech., 277, 271, 1994
  23. Patankar NA, Huang PY, Ko T, Joseph DD, J. Fluid Mech., 438, 67, 2001
  24. Joseph DD, Ocando D, J. Fluid Mech., 454, 263, 2002
  25. Wang J, Joseph DD, Phys. Fluids., 15, 2267, 2003
  26. Yang BH, Wang J, Joseph DD, Hu HH, Pan TW, Glowinski R, J. Fluid Mech., 540, 109, 2005
  27. Matas JP, Morris JF, Guazzelli E, J. Fluid Mech., 515, 171, 2004
  28. Matas JP, Morris JF, Guazzelli E, Oil Gas Sci. Technol., 59, 59, 2004
  29. Ko T, Patankar NA , Joseph DD, Computers & Fluids., 35, 121, 2006
  30. Hu HH, Int. J. Multiph. Flow, 22(2), 335, 1996
  31. Hu HH, Patankar NA, Zhu MY, J. Comput. Phys., 169, 427, 2001