Issue
Korean Journal of Chemical Engineering,
Vol.27, No.4, 1099-1108, 2010
4-Lump kinetic model for vacuum gas oil hydrocracker involving hydrogen consumption
A 4-lump kinetic model including hydrogen consumption for hydrocracking of vacuum gas oil in a pilot scale reactor is proposed. The advantage of this work over the previous ones is consideration of hydrogen consumption, imposed by converting vacuum gas oil to light products, which is implemented in the kinetic model by a quadratic expression as similar as response surface modeling. This approach considers vacuum gas oil (VGO) and unconverted oil as one lump whilst others are distillate, naphtha and gas. The pilot reactor bed is divided into hydrotreating and hydrocracking sections which are loaded with different types of catalysts. The aim of this paper is modeling the hydrocracking section, but the effect of hydrotreating is considered on the boundary condition of the hydrocracking part. The hydrocracking bed is considered as a plug flow reactor and it is modeled by the cellular network approach. Initially, a kinetic network with twelve coefficients and six paths is considered. But following evaluation using measured data and order of magnitude analysis, the three route passes and one activation energy coefficient are omitted; thus the number of coefficients is reduced to five. This approach improves the average absolute deviation of prediction from 7.2% to 5.92%. Furthermore, the model can predict the hydrogen consumption for hydrocracking with average absolute deviation about 8.59% in comparison to those calculated from experimental data.
[References]
  1. Verstraete JJ, Le Lannic K, Guibard I, Chem. Eng. Sci., 62(18-20), 5402, 2007
  2. Alvarez A, Ancheyta J, Appl. Catal. A: Gen., 351(2), 148, 2008
  3. Alvarez A, Ancheyta J, Chem. Eng. Sci., 63(3), 662, 2008
  4. Valavarasu G, Bhaskar M, Sairam B, Petrol. Sci. Technol., 23, 1323, 2005
  5. Ancheyta-Juarez J, Lopez-Isunza F, Aguilar-Rodriguez E, Appl. Catal. A: Gen., 177(2), 227, 1999
  6. Krambeck FJ, Kinetics and thermodynamics lumping of multicomponent mixtures, Elsevier, Amsterdam, 111, 1991
  7. Ancheyta J, Sanchez S, Rodriguez MA, Catal. Today, 109(1-4), 76, 2005
  8. Mosby F, Buttke RD, Cox JA, Nikolaids C, Chem. Eng. Sci., 41, 989, 1986
  9. Aboul-Gheit K, Erdol Erdgas Kohle., 105, 1278, 1989
  10. Ayasse AR, Nagaishi H, Chan EW, Gray MR, Fuel, 76(11), 1025, 1997
  11. Huizenga P, Kuipers JAM, van Swaaij WPM, Ind. Eng. Chem. Res., 38(1), 98, 1999
  12. Yui SM, Sanford EC, Ind. Chem. Res., 28, 319, 1989
  13. Ancheyta-Juarez J, Lopez-Isunza F, Aguilar-Rodriguez E, Appl. Catal. A: Gen., 177(2), 227, 1999
  14. Aoyagi K, McCaffrey WC, Gray MR, Petrol. Sci. Technol., 21, 997, 2003
  15. Sanchez S, Rodriguez MA, Ancheyta J, Ind. Eng. Chem. Res., 44(25), 9409, 2005
  16. Singh J, Kumar MM, Saxena AK, Kumar S, Chem. Eng. J., 108(3), 239, 2005
  17. de Almeida RM, Guirardello R, Catal. Today, 109(1-4), 104, 2005
  18. Remesat D, Young B, Surcek WY, Chem. Eng. Res. Design., In press
  19. Vanlandeghem F, Nevicato D, Pitault I, Forissier M, Turlier P, Derouin C, Bernard JR, Appl. Catal. A: Gen., 138(2), 381, 1996
  20. de Almeida RM, Guirardello R, Catal. Today, 109(1-4), 104, 2005
  21. Meng XH, Xu CM, Gao JS, Li L, Appl. Catal. A: Gen., 301(1), 32, 2006
  22. Meng X, Xu C, Gao J, Li L, Catal. Communications., 8, 1197, 2007
  23. Zahedi S, Towfighi J, Karimzadeh R, Omidkhah MR, Korean J. Chem. Eng., 25, 4, 2008
  24. Choi JW, Choi WS, Lee KH, Ha BH, J. Korean Institute Chem. Eng., 32, 5, 1994
  25. Rodriguez MA, Ancheyta J, Energy Fuels, 18(3), 789, 2004
  26. Kunisada N, Choi KH, Korai Y, Mochida I, Appl. Catal. A: Gen., 260(2), 185, 2004
  27. Hsu CS, Robinson PR, Practical advances in petroleum processing, Volume I, Springer Publication, 1st Ed, 2006
  28. Mederos FS, Rodriguez MA, Ancheyta J, Arce E, Energy & Fuels., 20, 996, 2006
  29. Angelici RJ, Polyhedron., 16, 18, 3073
  30. Bhaskar M, Valavarasu G, Sairam B, Balaraman KS, Balu K, Ind. Eng. Chem. Res., 43(21), 6654, 2004
  31. Marroquin-Sanchez G, Ancheyta-Juarez J, Appl. Catal. A: Gen., 207(1-2), 407, 2001
  32. Tailleur RG, Comput. Chem. Eng., 29(11-12), 2404, 2005
  33. Mohanty S, Saraf DN, Kunzru D, Fuel Processing Tech., 29, 1, 1991
  34. Mears DE, Chem. Eng. Sci., 26, 1361, 1971
  35. Froment GF, Bischoff KB, Chemical reactor analysis and design., 2nd Ed., Wiley, New York, 1990
  36. Baerns M, Hofmann H, Renken A, Chemische reaktionstechnik., George Thieme Verlag, Stuttgart, 1987
  37. Montgomery DC, Design and analysis of experiments., John Wiley & Sons, New York, 2001
  38. Clarke GM, Kempson RE, Introduction to the design and analysis of experiments, Arnold, London, 1997
  39. Guo J, Jiang Y, Al-Dahhan MH, Chem. Eng. Sci., 63(3), 751, 2008
  40. Levenspiel O, Chem. Reaction Eng, 3rd Ed., John Wiley & Sons Inc, 2001
  41. Pareek VK, Yap Z, Brungs MP, Adesina AA, Chem. Eng. Sci., 56(21-22), 6063, 2001
  42. Palaskar SN, De JK, Pandit AB, Chem. Eng. Tech., 23, 2001
  43. Kumar A, Ganjyal GM, Jones D, Hanna MA, J. Food Eng., 84, 441, 2008
  44. Mills PL, Dudukovic MP, Ind. Eng. Chem. Fund., 18, 2, 1979
  45. Ahmed T, Hydrocarbon phase behavior, Gulf Publishing, Houston, 1989
  46. Marafi A, Kam E, Stanislaus A, Fuel., 87, 2131, 2008
  47. Ali MA, Tatsumi T, Masuda T, Appl. Catal. A: Gen., 233(1-2), 77, 2002
  48. Scherzer J, Gruia AJ, Hydrocracking Sci. and Tech., CRC Press, 1996
  49. Singh J, Kumar MM, Saxena AK, Kumar S, Chem. Eng. J., 108(3), 239, 2005