Issue
Korean Journal of Chemical Engineering,
Vol.27, No.4, 1123-1131, 2010
Water-gas shift reaction over supported Pt and Pt-CeOx catalysts
A comparison study was performed of the water-gas shift (WGS) reaction over Pt and ceria-promoted Pt catalysts supported on CeO2, ZrO2, and TiO2 under rather severe reaction conditions: 6.7 mol% CO, 6.7 mol% CO2, and 33.2 mol% H2O in H2. Several techniques--CO chemisorption, temperature-programmed reduction (TPR), and inductively coupled plasma-atomic emission spectroscopy (ICP-AES)--were employed to characterize the catalysts. The WGS reaction rate increased with increasing amount of chemisorbed CO over Pt/ZrO2, Pt/TiO2, and Pt-CeOx/ZrO2, whereas no such correlation was found over Pt/CeO2, Pt-CeOx/CeO2, and Pt-CeOx/TiO2. For these catalysts in the absence of any impurities such as Na+, the WGS activity increased with increasing surface area of the support, showed a maximum value, and then decreased as the surface area of the support was further increased. An adverse effect of Na+ on the amount of chemisorbed CO and the WGS activity was observed over Pt/CeO2. Pt-CeOx/TiO2 (51) showed the highest WGS activity among the tested supported Pt and Pt-CeOx catalysts. The close contact between Pt and the support or between Pt and CeOx, as monitored by H2-TPR, is closely related to the WGS activity. The catalytic stability at 583K improved with increasing surface area of the support over the CeO2- and ZrO2-supported Pt and Pt-CeOx catalysts.
[References]
  1. Temkin MI, Adv. Catal., 28, 173, 1979
  2. Newsome DS, Catal. Rev. Sci. Eng., 21, 275, 1980
  3. Ilinich O, Ruettinger W, Liu XS, Farrauto R, J. Catal., 247(1), 112, 2007
  4. Giroux T, Hwang S, Liu Y, Ruettinger W, Shore L, Appl. Catal. B: Environ., 56(1-2), 95, 2005
  5. Panagiotopoulou P, Kondarides DI, Catal. Today, 112(1-4), 49, 2006
  6. Liu XS, Ruettinger W, Xu XM, Farrauto R, Appl. Catal. B: Environ., 56(1-2), 69, 2005
  7. Evin HN, Jacobs G, Ruiz-Martinez J, Thomas GA, Davis BH, Catal. Lett., 120(3-4), 166, 2008
  8. Deng WL, Flytzani-Stephanopoulos M, Angew. Chem., 118, 2343, 2006
  9. Tibiletti D, Meunier FC, Goguet A, Reid D, Burch R, Boaro M, Vicario M, Trovarelli A, J. Catal., 244(2), 183, 2006
  10. Ricote S, Jacobs G, Milling M, Ji YY, Patterson PM, Davis BH, Appl. Catal. A: Gen., 303(1), 35, 2006
  11. Lee HC, Lee DH, Lim OY, Kim SH, Kim YT, Ko EY, Park ED, Stud. Surf. Sci. Catal., 167, 201, 2007
  12. Radhakrishnan R, Willigan RR, Dardas Z, Vanderspurt TH, AIChE J., 52(5), 1888, 2006
  13. Laniecki M, Ignacik M, Catal. Today, 116(3), 400, 2006
  14. Wang X, Gorte RJ, Wagner JP, J. Catal., 212(2), 225, 2002
  15. Zalc JM, Sokolovskii V, Loffler DG, J. Catal., 206(1), 169, 2002
  16. Iida H, Igarashi A, Appl. Catal. A: Gen., 298, 152, 2006
  17. Panagiotopoulou P, Christodoulakis A, Kondarides DI, Boghosian S, J. Catal., 240(2), 114, 2006
  18. Panagiotopoulou P, Kondarides DI, J. Catal., 267(1), 57, 2009
  19. Azzam KG, Babich IV, Seshan K, Lefferts L, Appl. Catal. A: Gen., 338(1-2), 66, 2008
  20. Kim YT, Park ED, Lee HC, Lee D, Lee KH, Appl. Catal. B: Environ., 90(1-2), 45, 2009
  21. Zhu XL, Hoang T, Lobban LL, Mallinson RG, Catal. Lett., 129(1-2), 135, 2009
  22. Gonzalez ID, Navarro RM, Wen W, Marinkovic N, Rodriguez JA, Rosa F, Fierro JLG, Catal. Today., 149, 372, 2010
  23. Yao HC, Yu Yao YF, J. Catal., 86, 254, 1984
  24. Hwang CP, Yeh CT, J. Mol. Catal. A: Chem., 112, 295, 1996
  25. McCabe RW, Wong C, Woo HS, J. Catal., 114, 354, 1988
  26. Holmgren A, Andersson B, J. Catal., 178(1), 14, 1998
  27. Li C, Sakata Y, Arai T, Domen K, Maruya KI, Onishi T, J.Chem. Soc. Faraday Trans.1., 85, 929, 1989
  28. Srinivasan R, Harris MB, Simpson SF, Davis BH, J. Mater.Res., 3, 787, 1988
  29. Spurr RA, Myers H, Anal. Chem., 59, 761, 1957