Issue
Korean Journal of Chemical Engineering,
Vol.27, No.4, 1301-1309, 2010
Influence of aging conditions on textural properties of water-glass-based silica aerogels prepared at ambient pressure
The experimental results of aging time and temperature on the textural properties of water-glass (sodium silicate)-based silica aerogels are reported and discussed. Aging of the hydrogel for different times and temperatures led to an ability to increase the stiffness and strength of the networks. These improvements enabled the gel to withstand ambient pressure drying (APD) and, consequently, preserve the highly porous silica network without collapse. The pore size and volume increased with increasing aging temperature and time, while the specific surface area decreased. Monolithic aerogels with extremely low bulk density (~0.069 g/cm3), high specific surface area (820 m2g-1), large cumulative pore volume (3.8 cm3g-1), and high porosity (~96%) were obtained by aging at 60 ℃ for 18 hours. Therefore, easy synthesis of monolithic silica aerogels at ambient pressure is achievable using a relatively inexpensive silica precursor (sodium silicate).
[References]
  1. Hrubesh LW, Chem. Ind., 17, 824, 1990
  2. Bond GC, Flamerz S, Appl. Catal., 33, 219, 1987
  3. Rao AV, Kalesh RR, Sci. Technol. Adv. Mater., 4, 509, 2003
  4. Kim K, Jang KY, Upadhey RS, J. Amer. Ceram. Soc., 78, 1997, 1991
  5. Pajonk GM, Appl. Catal., 72, 217, 1991
  6. Akimov YK, Instruments and Experimental Techniques., 46, 287, 2003
  7. Pajonk GM, Tichner SJ, in: J. Fricke (Ed.), Processings of the First International symposium on Aerogels, Wurzburg, Germany, 23-25, September 193, 1985
  8. Reed ST, Ashley CS, Brinker CJ, Walko RJ, Ellefsoon R, Gill J, SPIE., 1328, 220, 1990
  9. Cunha JP, Neves F, Lopes MI, Nucl. Instrum. Methods Phys. Res. A., 452, 401, 2001
  10. Brinker CJ, Sherere SW, Sol-Gel Sci., Academic Press, San Diego, 501, 1990
  11. Sumiyoshi T, Adachi I, Enomoto R, Iijima T, Suda R, Yokoyama M, Yokogawa H, J. Non-Cryst. Solids., 225, 369, 1998
  12. Schmidt M, Schwertfeger F, J. Non-Cryst. Solids., 225, 364, 1998
  13. Hrubesh LW, J. Non-Cryst. Solids., 225, 335, 1998
  14. Fesmire JE, Cryogenics., 46, 111, 2006
  15. Yim TJ, Kim SY, Yoo KP, Korean J. Chem. Eng., 19(1), 159, 2002
  16. Harris TM, Land VD, Teeters DC, J. Non-Cryst. Solids., 283, 11, 2001
  17. Lee CJ, Kim GS, Hyun SH, J. Sol-Gel Sci. Technol., 37, 2237, 2002
  18. Shi F, Wang L, Liu J, Mater. Lett., 60, 29, 2006
  19. Hwang HJ, Kim CE, Yoon JS, J. Sol-Gel Sci. Technol., 49, 47, 2009
  20. Rao AV, Rao AP, Shewale PM, Bhagat SD, J. Sol-Gel Sci. Technol., 49, 285, 2009
  21. Schwertfeger F, Frank D, Schmidt M, J. Non-Cryst. Solids., 225, 24, 1998
  22. Smith DM, Stein D, Anderson JM, Ackerman W, J. Non-Cryst. Solids., 186, 104, 1995
  23. Kang SK, Choi SY, J. Mater. Sci., 35(19), 4971, 2000
  24. Jung HH, Hwang SW, Hyun SH, Ahn YS, J. Sol-Gel Sci.Tech., 41, 139, 2007
  25. Hæreid S, Anderson J, Einarsrud MA, Hua DW, Smith DM, J.Non-Cryst. Solids., 185, 221, 1995
  26. Reichenauer G, J.Non-Cryst. Solids., 350, 189, 2004
  27. Suh DJ, Park TJ, Sonn JH, Han HY, Lim JC, Korean J. Chem. Eng., 17(1), 101, 2000
  28. He F, Zhao H, Qu X, Zhang C, Qiu W, J. Mater. Process.Tech., 209, 1621, 2009
  29. Jarzebski AB, Lorenc J, Aristov YI, Lisitza N, J. Non-Cryst.Solids., 190, 198, 1995
  30. Takahasi R, Nakanishi K, Soga N, J. Non-Cryst. Solids., 189, 66, 1995
  31. Li ZJ, Liu CR, Zhao QS, J. Non-Cryst. Solids., 265, 189, 2000
  32. Shewale PM, Rao AV, Rao AP, Bhagat SD, J. Sol-Gel Sci. Technol., 49, 285, 2009
  33. Hwang SW, Kim TY, Hyun SH, J. Colloid Interface Sci., 322(1), 224, 2008
  34. Brinker CJ, Sherere SW, AAPG Bull., Academic Press, San Diego, 662, 1990
  35. Rouquerol F, Avnir D, Fairbridge CW, Everett DH, Haynes JH, Pernicone N, Ramsay JDF, Sing KSW, Unger KK, Pure Appl. Chem., 66, 1739, 1994
  36. Rouquerol F, Sing KSW, Jean rouquerol - adsorption by powders and porous solids: Principles., Methodology and Applications, Academic Press, 1998
  37. Bi ZC, Zhang ZS, Xu F, Qian YY, Yu JY, J. Colloid Interface Sci., 214(2), 368, 1999
  38. Gesser HD, Goswami PC, Chem. Rev., 89, 765, 1989
  39. Bhagat SD, Kim YH, Yi GB, Ahn YS, Yeo JG, Microporous and Mesoporous Materials., 253, 3231, 2006
  40. Wang LJ, Zhao SY, Yang M, Mater. Chem. Phys., 113(1), 485, 2009
  41. Deshpande R, Smith DM, Brinker CJ, J. Non-Cryst. Solids., 144, 32, 1992
  42. Zhou XC, Zhong LP, Xu YP, Inorganic Mater., 44, 976, 2008
  43. Laczka M, Kowalska KC, Kogul M, J. Non-Cryst. Solids., 287, 10, 2007
  44. Brinker CJ, Scherer GW, J. Non-Cryst. Solids., 70, 301, 1985
  45. Smitha S, Shajesh P, Aravind PR, Rajesh Kumar S, Krishna Pillai P, Warrier KGK, Microporous and Mesoporous Materials., 91, 286, 2006
  46. Bangi UKH, Rao AV, Rao AP, Sci. Technol. Adv. Mater., 9, 35006, 2008
  47. Rassy HE, Pierre AC, J. Non-Cryst. Solids., 351, 1603, 2005
  48. Jeong AY, Goo SM, Kim DP, J. Sol-Gel Technol., 19, 483, 2000
  49. Rao AP, Rao AV, Pajonk GM, Shewale PM, J. Mater. Sci., 42(20), 8418, 2007
  50. Scherer GW, Haereid S, Nilsen E, Einarsud MA, J. Non-Cryst. Solids., 202, 104, 1996
  51. Rao AP, Rao AV, Gurav JL, J. Porous Mater., 15, 507, 2008
  52. Rao AP, Rao AV, Pajonk GM, Appl. Surf. Sci., 253(14), 6032, 2007
  53. Pierre AC, Elaloui E, Pajonk GM, Langmuir, 14(1), 66, 1998
  54. Li WC, Lu AH, Guo SC, J. Colloid Interface Sci., 254(1), 153, 2002
  55. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T, Pure Appl. Chem., 57(4), 603, 1985