Issue
Korean Journal of Chemical Engineering,
Vol.27, No.4, 1132-1138, 2010
Steam reforming of liquid petroleum gas over Mn-promoted Ni/γ-Al2O3 catalysts
Three different Mn-promoted Ni/γ-Al2O3 catalysts, Mn/Ni/γ-Al2O3, Mn-Ni/γ-Al2O3 and Ni/Mn/γ-Al2O3, were prepared and applied to the steam reforming of liquid petroleum gas (LPG) mainly composed of propane and butane. For comparison, Ni/γ-Al2O3 catalysts containing different amount of Ni were also examined. In the case of the Ni/γ-Al2O3 catalysts, 4.1 wt% Ni/γ-Al2O3 showed the stable catalytic activity with the least amount of coke formation. Among the various Mn-promoted Ni/γ-Al2O3 catalysts, Mn/Ni/γ-Al2O3 showed the stable catalytic activity with the least amount of coke formation. It also exhibited a similar H2 formation rate compared with Ni/γ-Al2O3. Several characterization techniques--N2 adsorption/desorption, X-ray diffraction (XRD), CO chemisorptions, temperature-programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS) and CHNS analysis--were employed to characterize the catalysts. The catalytic activity increased with increasing amount of chemisorbed CO for the Mn-promoted Ni/γ-Al2O3 catalysts. The highest proportion of Mn^(4+) species was observed for the most stable catalyst.
[References]
  1. Song CS, Catal. Today, 77(1-2), 17, 2002
  2. Kolb G, Zapf R, Hessel V, Lowe H, Appl. Catal. A: Gen., 277(1-2), 155, 2004
  3. Ahmed K, Gamman J, Foger K, Solid State Ion., 152, 485, 2002
  4. Holladay JD, Jones EO, Phelps M, Hu JL, J. Power Sources, 108(1-2), 21, 2002
  5. Craciun R, Shereck B, Gorte RJ, Catal. Lett., 51(3-4), 149, 1998
  6. Ming QM, Healey T, Allen L, Irving P, Catal. Today, 77(1-2), 51, 2002
  7. Geissler K, Newson E, Vogel F, Truong TB, Hottinger P, Phys.Chem. Chem. Phys., 3, 289, 2001
  8. Ayabe S, Omoto H, Utaka T, Kikuchi R, Sasaki K, Teraoka Y, Eguchi K, Appl. Catal. A: Gen., 241(1-2), 261, 2003
  9. Cheekatamarla PK, Finnerty CM, J. Power Sources, 160(1), 490, 2006
  10. Rostrup-Nielsen JR, Catal. Today., 18, 305, 1993
  11. Natesakhawat S, Watson RB, Wang XQ, Ozkan US, J. Catal., 234(2), 496, 2005
  12. Richardson JT, Propp JL, J. Catal., 98, 457, 1986
  13. Wynblatt P, Gjoestein NA, Prog. Solid State Chem., 9, 21, 1975
  14. Zhang ZL, Verykios XE, Appl. Catal. A: Gen., 138(1), 109, 1996
  15. Wei JM, Xu BQ, Li JL, Cheng ZX, Zhu QM, Appl. Catal. A: Gen., 196(2), L167, 2000
  16. Raberg LB, Jensen MB, Olsbye U, Daniel C, Haag S, Mirodatos C, Sjastad AO, J. Catal., 249(2), 250, 2007
  17. Trimm DL, Catal. Today, 37(3), 233, 1997
  18. Wang SB, Lu GQM, Appl. Catal. B: Environ., 16(3), 269, 1998
  19. Horiuchi T, Sakuma K, Fukui T, Kubo Y, Osaki T, Mori T, Appl. Catal. A: Gen., 144(1-2), 111, 1996
  20. Bradford MC, Vannice MA, Appl. Catal. A: Gen., 142(1), 73, 1996
  21. Chen YG, Yamazaki O, Tomishige K, Fujimoto K, Catal. Lett., 39(1-2), 91, 1996
  22. Chen YG, Tomishige K, Yokoyama K, Fujimoto K, J. Catal., 184(2), 479, 1999
  23. Tomishige K, Chen YG, Fujimoto K, J. Catal., 181(1), 91, 1999
  24. Christensen KO, Chen D, Lodeng R, Holmen A, Appl. Catal. A: Gen., 314(1), 9, 2006
  25. Hou ZY, Yokota O, Tanaka T, Yashima T, Appl. Catal. A: Gen., 253(2), 381, 2003
  26. Su BL, Guo SD, in Delmen, Formment GF(Eds.), Catalyst Deactivation, Elsevier, Amsterdam, 325, 1999
  27. Trimm DL, Catal. Today, 49(1-3), 3, 1999
  28. Natesakhawat S, Watson RB, Wang XQ, Ozkan US, J. Catal., 234(2), 496, 2005
  29. Natesakhawat S, Oktar M, Ozkan US, J. Mol. Catal. A-Chem., 241(1-2), 133, 2005
  30. Seok SH, Choi SH, Park ED, Han SH, Lee JS, J. Catal., 209(1), 6, 2002
  31. Chmielarz L, Kustrowski P, Dziembaj R, Thermochm. Acta., 395, 225, 2002
  32. Schulze K, Makowski W, Chyzi R, Appl Clay. Sci., 18, 59, 2001
  33. Kim JH, Suh DJ, Park TJ, Kim KL, Appl. Catal. A: Gen., 197(2), 191, 2000