Issue
Korean Journal of Chemical Engineering,
Vol.27, No.4, 1213-1219, 2010
Controlling the oxidation of organic brightener during electroplating using an ion-exchange membrane
The effect of an ion-exchange membrane combined with a dimensionally stable anode on the oxidation rate of organic brightener and electroplating performance was investigated. The oxidation rate of the brightener was measured by analyzing the total organic carbon content in the plating solution. The oxidation rate increased rapidly as the current density increased when there was no ion-exchange membrane. However, when an ion-exchange membrane was present, the oxidation rate of the brightener was significantly reduced by Neosepta CMX and CMS cationexchange membranes. The CMS monovalent selective cation-exchange membrane in particular was the most effective in reducing organic brightener oxidation, regardless of the current density. Through-hole printed circuit board electroplating was more precise with an ion-exchange membrane than with no membrane. These results confirmed that the electroplating performance was improved by the presence of an ion-exchange membrane on the anode, effectively inhibiting the oxidation of organic brightener.
[References]
  1. Yeo WD, Yoo JY, Hong SK, Printed Circuit Board (PCB), KISTI, Seoul
  2. Miura S, Honma H, Surf. Coat. Technol., 169, 91, 2003
  3. Lefebvre MJ, Allardyce G, Seita M, Tsuchida H, Kusaka M, Hayashi S, Circuit World., 29, 9, 2003
  4. Dow WP, Yen MY, Liao SZ, Chiu YD, Huang HC, Electrochim. Acta, 53(28), 8228, 2008
  5. Li J, Lu H, Guo J, Xu Z, Zhou Y, Environ. Sci. Technol., 41, 1995, 2007
  6. Huang K, Guo J, Xu ZM, J. Hazard. Mater., 164(2-3), 399, 2009
  7. Kobayashi T, Kawasaki J, Mihara K, Honma H, Electrochim. Acta, 47(1-2), 85, 2001
  8. Pohjornta A, Tenno R, J. Electrochem. Soc., 154, D152, 2007
  9. Coombs CF, Printed Circuits Handbook., McGraw-Hill, New York, 2008
  10. Stangl M, Dittel V, Acker J, Hoffmann V, Gruner W, Strehle S, Wetzig K, Appl. Surf. Sci., 252(1), 158, 2005
  11. Abrams F, Printed Circuit Fabrication., 23, 56, 2000
  12. Kabdasli I, Arslan T, Olmez-Hanci T, Arslan-Alaton I, Tunay O, J. Hazard. Mater., 165(1-3), 838, 2009
  13. Adhoum N, Monser L, Bellakhal N, Belgaied JE, J. Hazard. Mater., 112(3), 207, 2004
  14. Golder AK, Samanta AN, Ray S, J. Hazard. Mater., 141(3), 653, 2007
  15. Golder AK, Dhaneesh V, Samanta AN, Ray S, Chem. Eng.Technol., 1, 143, 2008
  16. Golder AK, Samanta AN, Ray S, Sep. Purif. Technol., 53(1), 33, 2007
  17. Lai CL, Lin KS, J. Hazard. Mater., 136(2), 183, 2006
  18. Xiu FR, Zhang FS, J. Hazard. Mater., 165(1-3), 1002, 2009
  19. Harris DC, Exploring chemical analysis (2nd Ed.)., Freeman, New York, 2001
  20. Bard AJ, Faulkner LR, Electrochemical methods., 2nd Ed.,Wiley, New York, 2001
  21. Strathmann H, Ion-exchange membrane separation processes., Elsevier, Amsterdam, 2004
  22. Gohil GS, Binsu VV, Shahi VK, J. Membr. Sci., 280(1-2), 210, 2006
  23. Tuan LX, Mertens D, Buess-Herman C, Desalination, 240(1-3), 351, 2009
  24. Zhang Y, Van der Bruggen B, Pinoy L, Meesschaert B, J. Membr. Sci., 332(1-2), 104, 2009
  25. Hamid ZA, Aal AA, Surf. Coat. Technol., 203, 1360, 2009
  26. Hong B, Jiang C, Wang X, Surf. Coat. Technol., 201, 7449, 2007
  27. Choi JH, Moon SH, J. Colloid Interface Sci., 265(1), 93, 2003
  28. Choi JH, Kim SH, Moon SH, J. Colloid Interface Sci., 241(1), 120, 2001
  29. Le XT, J. Colloid Interface Sci., 325(1), 215, 2008