Issue
Korean Journal of Chemical Engineering,
Vol.27, No.2, 609-618, 2010
Modeling and simulation of a simulated moving bed for adsorptive para-xylene separation
A multi-cell model was developed to analyze the behavior of a simulated moving bed process for adsorptive para-xylene separation from other xylene isomers. A novel technology for a semi-batch mode adsorption experiment was developed and used for fast and accurate data collection. Interaction parameters between different species for a multi-component extended Langmuir isotherm were estimated from single and multi-component adsorption experiments and implemented into the model. The parameters such as porosities, particle density and mass transfer coefficients were obtained from adsorbent analysis and commercial plant operation. To resolve the problem of high dimensionality, a cell-by-cell approach was proposed to solve the model. The recovery and purity of para-xylene as well as the concentration profile calculated from the model were in good agreement with the actual data. The effects of channeling and feed composition change were simulated, and they turned out to be physically meaningful. The simulation model will be used for operation condition optimization, trouble shooting, and productivity enhancement including a configuration change.
[References]
  1. Pang P, Global petrochemical review, UOP's Korea Technology Seminar, Jejudo, 2004
  2. ASH G, BARTH K, HOTIER G, MANK L, RENARD P, Rev. Inst. Fr. Pet., 49(5), 541, 1994
  3. Broughton DB, Gerhold CG, US Patent 2,985,589, 1961
  4. Broughton DB, Neuzil RW, Pharis JM, Brearley CS, Chem. Eng. Prog., 66, 70, 1970
  5. Kearney MM, Hieb KL, US Patent 5,102,553, 1992
  6. Kim JK, Abunasser N, Wankat PC, Korean J. Chem. Eng., 22(4), 619, 2005
  7. Ludemann-Hombourger O, Bailly M, Nicoud RM, Sep. Sci. Technol., 35(9), 1285, 2000
  8. Ludemann-Hombourger O, Nicoud RM, Bailly M, Sep. Sci. Technol., 35(12), 1829, 2000
  9. Schramm H, Kaspereit M, Kienle A, Seidel-Morgenstern A, Chem. Eng. Technol., 25(12), 1151, 2002
  10. UOP, Parex process, www.uop.com (accessed)
  11. Azevedo DCS, Neves SB, Rodrigues AE, Cavalcante Jr. CL, Ravagnani SP, Anais do I Encontro Brasileiro sobre Adsorcao, Fortaleza, 93, 1997
  12. Gu J, Jiang W, Gu X, J. East China Univ. Sci. Technol., 23, 725, 1997
  13. Lee KN, Korean J. Chem. Eng., 26(2), 468, 2009
  14. Lim YI, Korean J. Chem. Eng., 21(4), 836, 2004
  15. Migliorini C, Mazzotti M, Morbidelli M, AIChE J., 45(7), 1411, 1999
  16. Minceva M, Rodrigues AE, Sep. Sci. Technol., 38(7), 1463, 2003
  17. Minceva M, Rodrigues AE, Ind. Eng. Chem. Res., 41(14), 3454, 2002
  18. Tong Z, Ge Z, Yang C, ACTA PETROLEI SINICA PETROLEUM PROCESSING SECTION, 11, 36, 1995
  19. Wei CN, Diagnosis of manufacturing plant problems through process model parameter update, International Federation of Automation Control Conference, Maastricht, 1989
  20. Fowler RH, Guggenheim EA, Statistical thermodynamics, Cambridge University Press, Cambridge, 1939
  21. Glueckauf E, Trans. Faraday Soc., 51, 1540, 1955
  22. Guiochon G, Golshan-Shirazi S, Katti AM, Fundamentals of nonlinear and preparative chromatography, Academic Press, Boston, 1994
  23. Ruthven DM, Principles of adsorption and adsorption processes, Wiley-Interscience, 1984
  24. Charton F, Nicoud RM, J. Chromatography A, 702, 97, 1995
  25. Ernst UP, Hsu JT, Ind. Eng. Chem. Res., 28, 1211, 1989
  26. Van Deemter JJ, Zuiderweg FJ, Klinkenberg A, Chem. Eng. Sci., 5, 1, 1956
  27. Grace Davison, Adsorbents for process application, www.gracedavison.com (accessed).
  28. Breck DW, Zeolite molecular sieves: Structure, chemistry and use, John Wiley & Sons, New York (USA), 1974
  29. Gear CW, Numerical initial value problems in ordinary differential equations, Prentice Hall, Englewood Cliffs, 1971
  30. Myers AL, Seider WD, Introduction to chemical engineering and computer calculations, Prentice-Hall Englewood Cliffs, NJ, 1976
  31. Beauvais C, Boutin A, Fuchs AH, Adsorption-Journal of the International Adsorption Society, 11, 279, 2005
  32. Langmuir I, J. Am. Chem. Soc., 40, 1361, 1918
  33. Nicoud RM, Fuchs G, Adam P, Bailly M, Kusters E, Antia FD, Reuille R, Schmid E, Chirality NY, 5, 267, 1993
  34. Freundlich H, Colloid and capillary chemistry, 3rd German Edn. Methuen, London, 1926
  35. Sips S, J. Chem. Phys., 16, 490, 1948
  36. MOON JK, KEUM DK, Lee WK, Korean J. Chem. Eng., 6(3), 172, 1989
  37. Myers AL, Prausnitz JM, AIChE J., 11, 121, 1965
  38. Chilton TH, Colburn AP, Trans. Am. Inst. Chem. Eng., 26, 178, 1931
  39. Ergun S, Chem. Eng. Prog., 48, 89, 1952
  40. Kozeny J, Sitzungsberichte der Akademie der Wissenschaften in Wien, MATHEMATISCH-naturwissenschaftliche Klasse, Abteilung IIa, 136, 271, 1927
  41. Lee J, Shin NC, Korea Patent Korean Patent issued, 0589122, 2006