Issue
Korean Journal of Chemical Engineering,
Vol.26, No.6, 1467-1475, 2009
Two-level multiblock statistical monitoring for plant-wide processes
Due to the complexity of plant-wide processes, many of the current multivariate statistical process monitoring techniques are lacking in interpretation of the detected fault, and fault identification also becomes difficult. A new two-level multiblock independent component analysis and principal component analysis (MBICA-PCA) method is proposed in this paper. Different from the conventional method, the new approach can incorporate block information into the high level for global process monitoring. Through the new method, the process monitoring task can be greatly reduced and the interpretation for the process can be made more quickly. When a fault is detected, a two-step fault identification method is proposed. The responsible sub-block is first identified by contribution plots, which is followed by fault reconstruction in the corresponding sub-block for advanced fault identification. A case study of the Tennessee Eastman (TE) process evaluates the feasibility and efficiency of the proposed method.
[References]
  1. Kresta J, MacGregor JF, Marlin T, Can. J. Chem. Eng., 69, 35, 1991
  2. Nomikos P, Macgregor JF, AIChE J., 40(8), 1361, 1994
  3. Chen J, Yen JH, Korean J. Chem. Eng., 20(6), 1000, 2003
  4. Kim MH, Yoo CK, Korean J. Chem. Eng., 25(5), 947, 2008
  5. Ku W, Storer RH, Chem. Intell. Lab. Syst., 30, 179, 1995
  6. Bakshi BR, AIChE J., 44(7), 1596, 1998
  7. Qin SJ, Comput. Chem. Eng., 22(4-5), 503, 1998
  8. Li WH, Yue HH, Valle-Cervantes S, Qin SJ, J. Process Control, 10(5), 471, 2000
  9. Lee S, Yeom S, Lee KS, Korean J. Chem. Eng., 21(3), 575, 2004
  10. Byun IG, Nam HU, Song SK, Hwang IS, Lee TH, Park TJ, Korean J. Chem. Eng., 22(6), 917, 2005
  11. Kim KS, Ko JW, Korean J. Chem. Eng., 22(1), 26, 2005
  12. Lee C, Lee IB, Korean J. Chem. Eng., 25(2), 203, 2008
  13. Macgregor JF, Jaeckle C, Kiparissides C, Koutoudi M, AIChE J., 40(5), 826, 1994
  14. Westerhuis JA, Kourti T, MacGregor JF, J. Chemometrics., 12, 301, 1998
  15. Qin SJ, Valle S, Piovoso MJ, J. Chemometrics., 15, 715, 2001
  16. Smilde AK, Westerhuis JA, de Jong S, J. Chemometrics., 17, 323, 2003
  17. Choi SW, Lee IB, J. Process Control, 15(3), 295, 2005
  18. Cherry GA, Qin SJ, IEEE Trans. Semiconductor Manufacturing, 19, 159, 2006
  19. Hyvarinen A, Oja E, Neural Network, 13, 411, 2000
  20. Lee JM, Yoo CK, Lee IB, J. Process Control, 14(5), 467, 2004
  21. Lee JM, Yoo C, Lee IB, Chem. Eng. Sci., 59(14), 2995, 2004
  22. Kano M, Tanaka S, Hasebe S, Hashimoto I, Ohno H, Combined multivariate statistical process control, IFAC Symposium on Advanced Control of Chemical Processes (ADCHEM), 303, 2004
  23. Kano M, Tanaka S, Hasebe S, Hashimoto I, Ohno H, AIChE J., 49(4), 969, 2003
  24. Kano M, Hasebe S, Hashimoto I, Ohno H, Comput. Chem. Eng., 28(6-7), 1157, 2004
  25. Ge ZQ, Song ZH, Ind. Eng. Chem. Res., 46(7), 2054, 2007
  26. Westerhuis J, Gurden S, Smilde A, Chem. Intell. Lab. Syst., 51, 95, 2000
  27. Dunia R, Qin SJ, AIChE J., 44(8), 1813, 1998
  28. Dunia R, Qin SJ, Comput. Chem. Eng., 22(7-8), 927, 1998
  29. Wang HQ, Song ZH, Li P, Ind. Eng. Chem. Res., 41(10), 2455, 2002
  30. Lieftuche D, Kruger U, Irwin GW, Treasure RJ, IEE Proc.- Control Theory Appl., 153, 437, 2006
  31. Lieftucht D, Yruger U, Irwin GW, Comput. Chem. Eng., 30(5), 901, 2006
  32. Yue HH, Qin SJ, Ind. Eng. Chem. Res., 40(20), 4403, 2001
  33. Hyvarinen A, Neural Computation., 9, 1483, 1997
  34. Chen Q, Wynne RJ, Goulding P, Sandoz D, Control Eng. Pract., 8, 531, 2000
  35. Chen Q, Kruger UA, Leung TY, Control Eng. Pract., 12, 267, 2004
  36. Downs JJ, Vogel EF, Comput. Chem. Eng., 17, 245, 1993
  37. Chiang LH, Russell EL, Braatz RD, Fault detection and diagnosis in industrial systems, Springle-Verlag, London, 2001