Issue
Korean Journal of Chemical Engineering,
Vol.26, No.4, 1098-1105, 2009
Monte Carlo simulation on the adsorption properties of carbon tetrachloride, neopentane, and cyclohexane in MCM-41
The adsorption properties of carbon tetrachloride, neopentane, and cyclohexane in MCM-41 with heterogeneous and cylindrical pores have been studied by using grand canonical ensemble Monte Carlo simulation. The adsorption isotherm, average potential of adsorbate, isosteric heat of adsorption, and number density of molecules in MCM-41 were calculated. The simulated isotherms were compared with experimental ones. Also, different adsorption behaviors in MCM-41 with pore diameter of 2.2 and 3.2 nm were discussed. The capillary-condensation pressure increased for a given adsorbate with an increase in pore diameter. The average densities of carbon tetrachloride, neopentane, and cyclohexane in the two different pores above the capillary-condensation pressure were smaller than the corresponding liquid densities by about 12%. The adsorbate molecules did not form the multilayer in pore below the capillarycondensation pressure. The number of adsorption layers of molecules was constant in a given pore for the three adsorbates above the capillary-condensation pressure. Carbon tetrachloride molecules in pore were also ordered along the pore axis.
[References]
  1. Zhao XS, Lu GQ, Millar GJ, Ind. Eng. Chem. Res., 35(7), 2075, 1996
  2. Selvam P, Bhatia SK, Sonwane CG, Ind. Eng. Chem. Res., 40(15), 3237, 2001
  3. Panagiotopoulos AZ, Mol. Simulation, 9, 1, 1992
  4. Smit B, Siepmann JI, J. Phys. Chem., 98(34), 8442, 1994
  5. Chihara K, Mellot CF, Cheetham AK, Harms S, Mangyo H, Omote M, Kamiyama R, Korean J. Chem. Eng., 17(6), 649, 2000
  6. Kim BH, Kum GH, Seo YG, Korean J. Chem. Eng., 20(1), 104, 2003
  7. Carvalho AJP, Ferreira T, Candeias AJE, Ramalho JPP, J. Mol. Struct. (Theochem), 729, 65, 2005
  8. Fox JP, Bates SP, Langmuir, 21(10), 4746, 2005
  9. Maddox MW, Olivier JP, Gubbins KE, Langmuir, 13(6), 1737, 1997
  10. Koh CA, Montanari T, Nooney RI, Tahir SF, Westacott RE, Langmuir, 15(18), 6043, 1999
  11. Yun JH, Duren T, Keil FJ, Sexton NA, Langmuir, 18(7), 2693, 2002
  12. He YF, Seaton NA, Langmuir, 19(24), 10132, 2003
  13. Cao D, Shen Z, Chen J, Zhang X, Microporous and Mesoporous Mater., 67, 159, 2004
  14. Kuchta B, Llewellyn P, Denoyel R, Firlej L, Colloids Surf. A, 241, 137, 2004
  15. Kuchta B, Denoyel R, Firlej L, Colloids Surf. A, 241, 143, 2004
  16. Yang X, Yue X, Colloids Surf. A, 301, 166, 2007
  17. Coasne B, Pellenq RJM, J. Chem. Phys., 120(6), 2913, 2004
  18. Coasne B, Hung FR, Pellenq RJM, Siperstein FR, Gubbins KE, Langmuir, 22(1), 194, 2006
  19. van Beest BWH, Kramer GJ, van Santen RA, Phy. Rev. Lett., 64, 1955, 1990
  20. de Pablo JJ, Bonnin M, Prausnitz JM, Fluid Phase Equilibria, 73, 187, 1992
  21. Rey R, Pardo LC, Llanta E, Ando K, Lopez DO, Tamarit JL, Barrio M, J. Chem. Phys., 112(17), 7505, 2000
  22. Gupta A, Clark LA, Snurr RQ, Langmuir, 16(8), 3910, 2000
  23. Smit B, Mol. Phys., 85, 153, 1995
  24. Errington JR, Panagiotopoulos AZ, J. Chem. Phys., 111(21), 9731, 1999
  25. Martin MG, Siepmann JI, J. Phys. Chem. B, 103(21), 4508, 1999
  26. Macedonia MD, Maginn EJ, Mol. Phys., 96, 1375, 1999
  27. Lide DR, Kehiaian HV, CRC handbook of thermophysical and thermochemical data, CRC Press, Boca Raton, 1994
  28. Hakuman M, Naono H, J. Colloid Interface Sci., 241(1), 127, 2001
  29. Carrott MMLR, Candeias AJE, Carrott PJM, Ravikovitch PI, Neimark AV, Sequeira AD, Microporous and Mesoporous Mater., 47, 323, 2001
  30. Muller EA, Hung FR, Gubbins KE, Langmuir, 16(12), 5418, 2000
  31. Lide DR, CRC handbook of chemistry and physics, CRC Press, Boca Raton, 1999
  32. Ravikovitch PI, Vishnyakov A, Neimark AV, Carrott MMLR, Russo PA, Carrott PJ, Langmuir, 22(2), 513, 2006
  33. Striolo A, Chialvo AA, Gubbins KE, Cummings PT, J. Chem. Phys., 122, 234712, 2005