Issue
Korean Journal of Chemical Engineering,
Vol.26, No.4, 1058-1064, 2009
Removal of iron from drinking water by electrocoagulation: Adsorption and kinetics studies
The present study provides an electrocoagulation process for the removal of iron from drinking water with aluminum alloy as the anode and stainless steel as the cathode. The studies were carried out as a function of pH, temperature and current density. The adsorption capacity was evaluated with both the Langmuir and the Freundlich isotherm models. The results showed that the maximum removal efficiency of 98.8% was achieved at a current density of 0.06 A dm^(-2), at a pH of 6.5. The adsorption of iron preferably fitting the Langmuir adsorption isotherm suggests monolayer coverage of adsorbed molecules. The adsorption process follows second-order kinetics. Temperature studies showed that adsorption was endothermic and spontaneous in nature.
[References]
  1. Das B, Talukdar J, Sarma S, Gohain B, Dutta RK, Das AC, Curr. Sci., 85, 657, 2003
  2. Mahanta DB, Das NN, Dutta RK, Indian J. Environ. Prot., 24, 654, 2004
  3. Sharma R, Shah S, Mahanta C, Asain J. Water Environ. Pollut., 2, 47, 2005
  4. Subba Rao N, Environ. Monit. Assess., 136, 437, 2007
  5. WHO Guidelines for Drinking Water Quality, Health criteria and other supporting information, 2nd edition (2), WHO, Geneva, 1996
  6. Council directive 98/83/EC on the quality of water intended for human consumption, L330/32-L330/50, Official Journal of the European Communities, 1998
  7. Central pollution control board, Ministry of Environment and Forests, http://www.cpcb.nic.in Government of India, Delhi.
  8. Vaaramaa K, Lehto J, Desalination, 155(2), 157, 2003
  9. Munter R, Ojaste H, Sutt J, J. Environ. Eng., 131, 1014, 2005
  10. Andersen WC, Bruno TJ, Anal. Chim. Acta, 485, 1, 2003
  11. Berbenni P, Pollice A, Canziani R, Stabile L, Nobili F, Bioresour. Technol., 74(2), 109, 2000
  12. Aziz HA, Yusoff MS, Adlan MN, Adnan NH, Alias S, Water Manage., 24, 353, 2004
  13. Ellis D, Bouchard C, Lantagne G, Desalination, 130(3), 255, 2000
  14. Das B, Hazarika P, Saikia G, Kalita H, Goswami DC, Das HB, Dube SN, Dutta RK, J. Hazard. Mater., 141(3), 834, 2007
  15. Cho BY, Process Biochem., 40, 3314, 2005
  16. Miwa DW, Malpass GRP, Machado SAS, Motheo AJ, Water Res., 40, 3281, 2006
  17. Onder E, Koparal AS, Ogutveren UB, Sep. Purif. Technol., 52(3), 527, 2007
  18. Ikematsu M, Kaneda K, Iseki M, Yasuda M, Sci. Total Environ., 382, 159, 2007
  19. Jara CC, Fino D, Specchia V, Saracco G, Spinelli R, Appl. Catal. B: Environ., 70(1-4), 479, 2007
  20. Christensen PA, Egerton TA, Lin WF, Meynet P, Shaoa ZG, Wright NG, Chem. Commun., 38, 4022, 2006
  21. Carlos A, Huitle M, Ferro S, Chem. Soc. Rev., 35, 1324, 2006
  22. Gabrielli C, Maurin G, Francy-Chausson H, Thery P, Tran TTM, Tlili M, Desalination, 201(1-3), 150, 2006
  23. Chen XM, Chen GH, Yue PL, Chem. Eng. Sci., 57(13), 2449, 2002
  24. Chen GH, Sep. Purif. Technol., 38(1), 11, 2004
  25. Adhoum N, Monser L, Chem. Eng. Process., 43(10), 1281, 2004
  26. Kobya M, Can OT, Bayramoglu M, J. Hazard. Mater., B100, 163, 2003
  27. Namasivayam C, Prathap K, J. Hazard. Mater., 123B, 127, 2005
  28. Mckay G, Ho YS, Water Res., 33, 578, 1999
  29. Namasivayam C, Senthil Kumar S, Ind. Eng. Chem. Res., 37, 4813, 1998
  30. Uber FH, Z. Phys. Chem., 57, 387, 1985
  31. Langmuir I, J. Am. Chem. Soc., 40, 1361, 1918
  32. Michelson LD, Gideon PG, Pace EG, Kutal LH, US Department Industry, Office of Water Research and Technology Bulletin, 1975
  33. Nigussie W, Zewge F, Chandravanshi BS, J. Hazard. Mater., 147(3), 954, 2007
  34. Nayak Preeti S, Singh BK, Res. J. Chem. Environ., 11, 23, 2007
  35. Yang XY, Al-Duri B, Chem. Eng. J., 83(1), 15, 2001
  36. Golder AK, Samanta AN, Ray S, Sep. Purif. Technol., 52(1), 102, 2006