Issue
Korean Journal of Chemical Engineering,
Vol.26, No.4, 969-979, 2009
Mapping multi-class cancers and clinical outcomes prediction for multiple classifications of microarray gene expression data
DNA microarray analysis of gene expression is useful for discriminating between the various subtypes of cancer, which is necessary for the accurate diagnosis and treatment of patients. Particularly, assigning biological samples into subclasses or obtaining detailed phenotypes is an important practical application for microarray gene expression profiles. In the present study, a hierarchical framework of a nonlinear mapping classification was developed for elucidating data and classifying multiclass cancers based on microarray data sets. This classification maps the gene expression profiles of multi-class cancers to the visualized latent space and predicts the clinical output through highdimensional computational biology. The proposed method was used to interpret and analyze four leukemia subtypes from microarray data. The results demonstrate that, using a high-dimensional nonlinear mapping to extract biological insights from microarray data, the proposed method can identify leukemia subtypes on the basis of molecular-level monitoring and improve the interpretability of leukemia clinical outputs. Furthermore, this nonlinear mapping of cancer subtypes is used to establish a relationship between expression-based subclasses of leukemia tumors and leukemia patient treatment outcomes. The proposed method may be used to guide efficient and effective approaches for the treatment of leukemia subclasses.
[References]
  1. Hampton GM, Frierson HF, Trends. Mol. Med., 9, 5, 2003
  2. Ochs MF, Godwin AK, Bio Techniques, 34, S4, 2003
  3. Zhang BT, Yang JS, Chi SW, Machine Learning, 52, 67, 2003
  4. Bicciato S, Pandin M, Didone G, Di Bello C, Biotechnol. Bioeng., 81, 594, 2002
  5. Dudoit S, Fridlyand J, Speed TP, J. Am. Stat. Assoc., 97, 77, 2002
  6. Nguyen DV, Rocke DM, Bioinformatics, 18, 39, 2002
  7. Stephanopoulos G, Hwang DH, Schmit WA, Misra J, Stephanopoulos G, Bioinformatics, 18, 1054, 2002
  8. van Hal NLW, J. Biotechnol., 3, 271, 2002
  9. Yoo CK, Lee IB, Vanrolleghem PA, Comput. Chem. Eng., 29(6), 1345, 2005
  10. Gao Y, Church G, Bioinformatics, 21, 3970, 2005
  11. Sanguinetti G, Milo M, Rattray M, Lawrence ND, Bioinformatics, 21, 3748, 2005
  12. Li L, Bioinformatics, 22, 466, 2005
  13. Lu Y, Han J, Information Systems, 28, 243, 2003
  14. Golub TR, Slonim DK, Tamayo P, Lander ES, Science, 286, 531, 1999
  15. Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander ES, Golub TR, Proc. Natl. Acad. Sci., 96, 2907, 1999
  16. Toronen P, Kolehmainen M, Wong G, Castren E, Febs Lett., 451, 142, 1999
  17. Alizadeh AA, Nature, 403, 503, 2000
  18. Bishop CM, Svensen M, Neurocomputing, 21, 203, 1998
  19. Bishop CM, Tipping ME, Pattern Analysis and Machine Intelligence, 20, 281, 1998
  20. Bishop CM, Svensen M, Williams CKI, Neural Comput., 10, 215, 1998
  21. Tino P, Nabney I, IEEE Trans. Pattern Analysis and Machine Intelligence, 24, 639, 2002
  22. Nabney IT, Sun Y, Tino P, Kaban A, IEEE Trans. Knowledge and Data Engineering, 17, 384, 2005
  23. Svensen JFM, Ph. D Thesis, Aston University, 1998
  24. Lyons-Weiler J, Patel S, Bhattacharya SA, Genome Res., 13, 503, 2003
  25. Andrade AO, Nasuto S, Kyberd P, Sweeney-Teed CM, Biosystems, 82, 273, 2005
  26. Wang Y, Tetko IV, Hall MA, Frank E, Facius A, Mayer KFX, Mewes HW, Comput. Biology Chemistry, 29, 37, 2005
  27. Furey TS, Cristianini N, Duffy N, Bednarski DW, SchummerM, Haussler D, Bioinformatics, 16, 906, 2005
  28. Chow ML, Moler J, Mian IS, Physiol. Genomics, 5, 99, 2005
  29. Thomas JG, Olson JM, Tapscott SJ, Zhao LP, Genome Res., 11, 1227, 2001