Issue
Korean Journal of Chemical Engineering,
Vol.26, No.4, 963-968, 2009
Modelling mass transfer coefficient for liquid-liquid extraction with the interface adsorption of hydroxyl ions
A combined model was used for prediction of overall mass transfer coefficient of drops in the liquid-liquid extraction process, prone to the deleterious effect of adsorbed hydroxyl ions onto the interface. The importance is due to the use of different pH waters as aqueous phase. The work is based on single drop experiments with a chemical system of toluene-acetone-water where the pH of the continuous aqueous phase was within the range 5.5-8, appropriate to most industrial waters, and can lead to rigid behavior of circulating drops. The combined model in conjunction with the correlation developed here for the ratio of interfacial velocity to drop terminal velocity that links the film mass transfer coefficients of both sides can be used satisfactorily for design purposes. This model gives a maximum relative deviation of less than ±10% for the mass transfer directions of dispersed to continuous phase and vice versa.
[References]
  1. Bailes PJ, Godfrey JC, Slater MJ, Chem. Eng. Res. Des., 61, 321, 1983
  2. Misek T, Berger R, Schroter J, Standard test systems for liquid extraction studies, EFCE Pub. Series, No. 46, 2nd ed. pp. 46-49, The IChE, U.K, 1985
  3. Pfennig A, Schwerin A, Gaube J, J. Chromatogr. B, 711, 45, 1998
  4. Pfennig A, Schwerin A, Ind. Eng. Chem. Res., 37(8), 3180, 1998
  5. Czapla C, Bart HJ, Ind. Eng. Chem. Res., 40(11), 2525, 2001
  6. Marinova KG, Alargova RG, Denkov ND, Velev OD, Petsev DN, Ivanov IB, Borwankar RP, Langmuir, 12(8), 2045, 1996
  7. Dickinson W, Trans. Faraday Soc., 37, 140, 1941
  8. Maab S, Gabler A, Paschedag AR, Kraume M, Proceeding of international conference on multiphase flow, ICMF, pp. 321-327 Leipzig, Germany, 2007
  9. Taylor AJ, Wood FW, Trans. Faraday Soc., 53, 523, 1957
  10. Gabler A, Wegener M, Paschedag AR, Kraume M, Chem. Eng. Sci., 61(9), 3018, 2006
  11. Saien J, Akbari S, Chem. Eng. Data, 51, 1832, 2006
  12. Saien J, Daliri S, Ind. Eng. Chem. Res., 47(1), 171, 2008
  13. Ghalehchian JS, Slater MJ, Chem. Eng. J., 75(2), 131, 1999
  14. Ghalehchian JS, J. Chem. Eng. Jpn., 35(7), 604, 2002
  15. Slater MJ, Can. J. Chem. Eng., 73(4), 462, 1995
  16. Brodkorb MJ, Bosse D, von Reden C, Gorak A, Slater MJ, Chem. Eng. Process., 42(11), 825, 2003
  17. Saien J, Barani M, Can. J. Chem. Eng., 83(2), 224, 2005
  18. Saien J, Darayi A, J. Chem. Eng. Jpn., 38(9), 692, 2005
  19. Saien J, Riazikhah M, Ashrafizadeh SN, Ind. Eng. Chem. Res., 45(4), 1434, 2006
  20. Ashrafizadeh SN, Saien J, Reza B, Nasiri M, Ind. Eng. Chem. Res., 47, 7242, 2008
  21. Sanpui D, Khanna A, Korean J. Chem. Eng., 20(4), 609, 2003
  22. Lochiel AC, Calderbank PH, Chem. Eng. Sci., 19, 471, 1964
  23. Lochiel AC, Can. J. Chem. Eng., 43, 40, 1965
  24. Young CH, Korchinsky WJ, Chem. Eng. Sci., 44, 2355, 1989
  25. Handlos ASE, Baron T, AIChE J., 3, 127, 1957
  26. Steiner L, Chem. Eng. Sci., 41, 1979, 1986
  27. Baldauf W, Knapp H, Phys. Chem., 87, 304, 1983
  28. Sanpui D, Singh MK, Khanna A, Korean J. Chem. Eng., 21(2), 511, 2004
  29. Grace JR, Wairegi T, Nguyen TH, Trans. Inst. Chem. Eng., 54, 167, 1976
  30. Skelland AHP, Interphase Mass Transfer, in: Science and practice of liquid-liquid extraction, J. D. Thornton, pp. 93-94 Clarendon Press: Oxford, U.K, 1992
  31. Beitel A, Heideger WJ, Chem. Eng. Sci., 26, 711, 1971